

Concurrent & Distributed Systems 2006

Uwe R. Zimmer
The Australian National University

© 2006 Uwe R. Zimmer, The Australian National University Page 2 of 516 (Chapter 0: to 8)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

what is offered here?

Fundamentals & Overview

as well as perspectives, paths, methods, implementations

of/into/for/about

Concurrent & Distributed Systems

© 2006 Uwe R. Zimmer, The Australian National University Page 3 of 516 (Chapter 0: to 8)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

who could be interested in this?

anybody who …

… works with real-world scale computer systems

… would like to learn how to analyse and design
operational and robust systems

… would like to understand more about the existing trade-off between
theory, the real-world, traditions, and pragmatism

in computer science

… would like to know what you do not know about concurrent systems

© 2006 Uwe R. Zimmer, The Australian National University Page 4 of 516 (Chapter 0: to 8)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

who are these people? – introduction

This course will be given by

Uwe R. Zimmer

© 2006 Uwe R. Zimmer, The Australian National University Page 5 of 516 (Chapter 0: to 8)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

how will this all be done?

☞

Lectures:

• 3 per week … all the nice stuff and theory
Tuesday, 14:00 (PHYS-T1); Wednesday 12:00 (CHEM-T); Thursday 14:00 (CHEM-T)

☞

Laboratories:

• 2 hours per week … all the rough stuff and practice
dates tba – all in CSIT Nxxx
laboratory-enrolment:

https://cs.anu.edu.au/streams/

☞

Resources:

• introduced in the lectures and collected on the course page:

http://cs.anu.edu.au/student/comp2310/

… as well as schedules, slides, sources, etc. pp. … keep an eye on this page!

☞

Assessment:

• exam at the end of the course (70%) plus two assignments (15% each), and mid-term check (0%)

© 2006 Uwe R. Zimmer, The Australian National University Page 6 of 516 (Chapter 0: to 8)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Useful Literature

[Ben-Ari06]

M. Ben-Ari

Principles of Concurrent
and Distributed Programming

2006, second edition
Prentice-Hall,
ISBN 0-13-711821-X

Main technical textbook for this course.

• Many algorithms and basic concepts
will be found here

☞

references for specific aspects of the course will be given at appropriate places

© 2006 Uwe R. Zimmer, The Australian National University Page 7 of 516 (Chapter 0: to 8)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Lectures 2006

[number of lectures] - total:

≈

28

1. Concurrency [3]

1.1. Forms of concurrency [1]

• Coupled dynamical systems

1.2. Models and terminology [1]

• Abstractions
• Interleaving
• Atomicity
• Proofs in concurrent

and distributed systems

1.3. Processes & threads

1

 [1]

• Basic definitions
• Process states
• Implementations

2. Mutual exclusion [3]

2.1. by shared variables [2]

• Failure possibilities
• Dekker’s algorithm

2.2. by test-and-set hardware support [0.5]

• Minimal hardware support

2.3. by semaphores

1

 [0.5]

• Dijkstra definition
• OS semaphores

3. Condition synchronization [4]

3.1. Shared memory synchronization [2]

• Semaphores

1

• Cond. variables
• Conditional critical regions
• Monitors
• Protected objects

3.2. Message passing [2]

• Asynchronous / synchronous

1

• Remote invocation / rendezvous

• Message structure

• Addressing

4. Non-determinism [2]
in concurrent systems

4.1. Correctness under non-determinism
[1]

• Forms of non-determinism

• Non-determinism in
concurrent/distributed systems

• Is consistency/correctness plus
non-determinism a contradiction?

4.2. Select statements

1

 [1]

• Forms of non-deterministic message
reception

5. Scheduling [2]

5.1. Problem definition and design space
[1]

• Which problems are addressed / solved
by scheduling?

5.2. Basic scheduling methods [1]

• Assumptions for basic scheduling

• Basic methods

6. Safety and liveness [3]

6.1. Safety properties

• Examples for essential time-independent
safety properties

6.2. Livelocks, fairness

• Forms of livelocks
• Classification of fairness

6.3. Deadlocks

• Detection
• Avoidance
• Prevention (& recovery)

6.4. Failure modes
6.5. Idempotent & atomic operations

• Definitions
• Examples

7. Architectures for CDS [3]

7.1. Academic

• CSP
• occam

7.2. Production

• Ada95
• JAVA

7.3. Historical roots: UNIX

1

• UNIX processes
• UNIX communication schemes

7.4. Dedicated hardware

• Communication controllers

7.5. Embedded systems

8. Distributed systems [8]

8.1. Networks [1]

• OSI model

• Network implementations

8.2. Global times [1]

• synchronized clocks

• logical clocks

8.3. Distributed states [1]

• Consistency

• Snapshots

• Termination

8.4. Distributed communication [1]

• Name spaces

• Multi-casts

• Elections

• Network identification

• Dynamical groups

8.5. Distributed safety and liveness [1]

• Distributed deadlock detection

8.6. Forms of distribution/redundancy [1]

• computation

• memory

• operations

8.7. Transactions [2]

1. additional UNIX / C / POSIX
references and examples

© 2006 Uwe R. Zimmer, The Australian National University Page 8 of 516 (Chapter 0: to 8)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Laboratories & Assignments 2006

[number of labs] - total: 9

Laboratories

1. Concurrency language support
basics (in Ada95) [3]

1.1. Structured, strongly typed
programming

• Program structures
• Data structures

1.2. Generic, re-usable programming

• Generics
• Abstract types

1.3. Concurrent processes:

• Creation
• Termination
• Rendezvous

2. Concurrent programming [3]

2.1. Synchronization

• Protected objects

2.2. Remote invocation

• Extended rendezvous

2.3. Client-Server architectures

• Entry families
• Requeue facility

3. Concurrency in UNIX [3]

3.1. UNIX process creation, termination
3.2. UNIX process communication

• Pipes
• Sockets

Assignments

1. Concurrent programming [15%]

Ada95 programming task involving:
• Mutual exclusion
• Synchronization
• Message passing

2. Concurrent programming in UNIX [15%]

UNIX programming task involving:
• Semaphores
• Process communication

Examination & Checkpoints

1. Mid-term check

• Test question set with supplied answers [not marked]

2. Final exam – [70%]

• Examining the complete lecture

Marking

The final mark is based on the assignments [30%]
plus the final examination [70%]

Ada refresher course

Uwe R. Zimmer
The Australian National University

© 2006 Uwe R. Zimmer, The Australian National University Page 10 of 516 (Chapter 1: to 54)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

References for this chapter

[Cohen96]

Norman H. Cohen

Ada as a second language

McGraw-Hill series in computer science, 2nd
edition

[Ada 95 Reference manual]

(see lab pages or web)

© 2006 Uwe R. Zimmer, The Australian National University Page 11 of 516 (Chapter 1: to 54)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Ada95

Ada95 is a

standardized

 (ISO/IEC 8652:1995(E)) ‘general purpose’ language
with

core

 language primitives for

• strong typing, separate compilation (specification and implementation),
object-orientation,

• concurrency, monitors, rpcs, timeouts, scheduling, priority ceiling locks

• strong run-time environments

… and

standardized

 language-

annexes

 for

• additional real-time features, distributed programming,
system-level programming, numeric, informations systems,
safety and security issues.

© 2006 Uwe R. Zimmer, The Australian National University Page 12 of 516 (Chapter 1: to 54)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Ada95

A crash course
… refreshing:

• specification and implementation (body) parts, basic types

• exceptions

• information hiding in specifications (‘private’)

• generic programming

• class-wide programming (‘tagged types’)

• monitors and synchronisation (‘protected’, ‘entries’, ‘selects’, ‘accepts’)

• abstract types and dispatching

© 2006 Uwe R. Zimmer, The Australian National University Page 13 of 516 (Chapter 1: to 54)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Ada95

Basics
… introducing:

• specification and implementation (body) parts

• constants

• some basic types (integer specifics)

• some type attributes

• parameter specification

© 2006 Uwe R. Zimmer, The Australian National University Page 14 of 516 (Chapter 1: to 54)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

A simple queue specification

package Queue_Pack_Simple is

 QueueSize : constant Positive := 10;
 type Element is new Positive range 1_000..40_000;
 type Marker is mod QueueSize;
 type List is array (Marker'Range) of Element;
 type Queue_Type is record
 Top, Free : Marker := Marker'First;
 Elements : List;
 end record;

 procedure Enqueue (Item: in Element; Queue: in out Queue_Type);
 procedure Dequeue (Item: out Element; Queue: in out Queue_Type);

end Queue_Pack_Simple;

© 2006 Uwe R. Zimmer, The Australian National University Page 15 of 516 (Chapter 1: to 54)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

A simple queue implementation

package body Queue_Pack_Simple is

 procedure Enqueue (Item: in Element; Queue: in out Queue_Type) is
 begin
 Queue.Elements (Queue.Free) := Item;
 Queue.Free := Queue.Free - 1;
 end Enqueue;

 procedure Dequeue (Item: out Element; Queue: in out Queue_Type) is
 begin
 Item := Queue.Elements (Queue.Top);
 Queue.Top := Queue.Top - 1;
 end Dequeue;

end Queue_Pack_Simple;

© 2006 Uwe R. Zimmer, The Australian National University Page 16 of 516 (Chapter 1: to 54)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

A simple queue test program

with Queue_Pack_Simple; use Queue_Pack_Simple;

procedure Queue_Test_Simple is

 Queue : Queue_Type;
 Item : Element;

begin
 Enqueue (2000, Queue);
 Dequeue (Item, Queue);
 Dequeue (Item, Queue); -- will produce an unpredictable result!
end Queue_Test_Simple;

© 2006 Uwe R. Zimmer, The Australian National University Page 17 of 516 (Chapter 1: to 54)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Ada95

Exceptions
… introducing:

• exception handling

• enumeration types

• functional type attributes

© 2006 Uwe R. Zimmer, The Australian National University Page 18 of 516 (Chapter 1: to 54)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

A queue specification with proper exceptions

package Queue_Pack_Exceptions is

 QueueSize : constant Integer := 10;
 type Element is (Up, Down, Spin, Turn);
 type Marker is mod QueueSize;
 type List is array (Marker'Range) of Element;
 type Queue_State is (Empty, Filled);
 type Queue_Type is record
 Top, Free : Marker := Marker'First;
 State : Queue_State := Empty;
 Elements : List;
 end record;

 procedure Enqueue (Item: in Element; Queue: in out Queue_Type);
 procedure Dequeue (Item: out Element; Queue: in out Queue_Type);

 Queueoverflow, Queueunderflow : exception;

end Queue_Pack_Exceptions;

© 2006 Uwe R. Zimmer, The Australian National University Page 19 of 516 (Chapter 1: to 54)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

A queue implementations with proper exceptions

package body Queue_Pack_Exceptions is

 procedure Enqueue (Item: in Element; Queue: in out Queue_Type) is
 begin
 if Queue.State = Filled and Queue.Top = Queue.Free then
 raise Queueoverflow;
 end if;
 Queue.Elements (Queue.Free) := Item;
 Queue.Free := Marker'Pred (Queue.Free);
 Queue.State := Filled;
 end Enqueue;

 procedure Dequeue (Item: out Element; Queue: in out Queue_Type) is
 begin
 if Queue.State = Empty then
 raise Queueunderflow;
 end if;
 Item := Queue.Elements (Queue.Top);
 Queue.Top := Marker'Pred (Queue.Top);
 if Queue.Top = Queue.Free then Queue.State := Empty; end if;
 end Dequeue;

end Queue_Pack_Exceptions;

© 2006 Uwe R. Zimmer, The Australian National University Page 20 of 516 (Chapter 1: to 54)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

A queue test program with proper exceptions

with Queue_Pack_Exceptions; use Queue_Pack_Exceptions;
with Ada.Text_IO; use Ada.Text_IO;

procedure Queue_Test_Exceptions is

 Queue : Queue_Type;
 Item : Element;

begin
 Enqueue (Turn, Queue);
 Dequeue (Item, Queue);
 Dequeue (Item, Queue); -- will produce a 'Queue underflow'

exception
 when Queueunderflow => Put ("Queue underflow");
 when Queueoverflow => Put ("Queue overflow");

end Queue_Test_Exceptions;

© 2006 Uwe R. Zimmer, The Australian National University Page 21 of 516 (Chapter 1: to 54)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Ada95

Information hiding (private parts)
… introducing:

• private ☞ assignments and comparisons are allowed

• limited private ☞ entity cannot be assigned or compared

© 2006 Uwe R. Zimmer, The Australian National University Page 22 of 516 (Chapter 1: to 54)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

A queue specification with proper information hiding

package Queue_Pack_Private is

 QueueSize : constant Integer := 10;
 type Element is new Positive range 1..1000;
 type Queue_Type is limited private;

 procedure Enqueue (Item: in Element; Queue: in out Queue_Type);
 procedure Dequeue (Item: out Element; Queue: in out Queue_Type);

 Queueoverflow, Queueunderflow : exception;

private
 type Marker is mod QueueSize;
 type List is array (Marker'Range) of Element;
 type Queue_State is (Empty, Filled);
 type Queue_Type is record
 Top, Free : Marker := Marker'First;
 State : Queue_State := Empty;
 Elements : List;
 end record;
end Queue_Pack_Private;

© 2006 Uwe R. Zimmer, The Australian National University Page 23 of 516 (Chapter 1: to 54)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

A queue implementations with proper information hiding

package body Queue_Pack_Private is

 procedure Enqueue (Item: in Element; Queue: in out Queue_Type) is
 begin
 if Queue.State = Filled and Queue.Top = Queue.Free then
 raise Queueoverflow;
 end if;
 Queue.Elements (Queue.Free) := Item;
 Queue.Free := Marker'Pred (Queue.Free);
 Queue.State := Filled;
 end Enqueue;

 procedure Dequeue (Item: out Element; Queue: in out Queue_Type) is
 begin
 if Queue.State = Empty then
 raise Queueunderflow;
 end if;
 Item := Queue.Elements (Queue.Top);
 Queue.Top := Marker'Pred (Queue.Top);
 if Queue.Top = Queue.Free then Queue.State := Empty; end if;
 end Dequeue;

end Queue_Pack_Private;

identical

© 2006 Uwe R. Zimmer, The Australian National University Page 24 of 516 (Chapter 1: to 54)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

A queue test program with proper information hiding

with Queue_Pack_Private; use Queue_Pack_Private;
with Ada.Text_IO; use Ada.Text_IO;

procedure Queue_Test_Private is

 Queue, Queue_Copy : Queue_Type;
 Item : Element;

begin
 Queue_Copy := Queue;
 -- compiler-error: left hand of assignment must not be limited type
 Enqueue (Item => 1, Queue => Queue);
 Dequeue (Item, Queue);
 Dequeue (Item, Queue); -- will produce a 'Queue underflow'

exception
 when Queueunderflow => Put ("Queue underflow");
 when Queueoverflow => Put ("Queue overflow");
end Queue_Test_Private;

© 2006 Uwe R. Zimmer, The Australian National University Page 25 of 516 (Chapter 1: to 54)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Ada95

Generic packages
… introducing:

• specification of generic packages

• instantiation of generic packages

© 2006 Uwe R. Zimmer, The Australian National University Page 26 of 516 (Chapter 1: to 54)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

A generic queue specification

generic
 type Element is private;

package Queue_Pack_Generic is

 QueueSize: constant Integer := 10;
 type Queue_Type is limited private;

 procedure Enqueue (Item: in Element; Queue: in out Queue_Type);
 procedure Dequeue (Item: out Element; Queue: in out Queue_Type);

 Queueoverflow, Queueunderflow : exception;

private
 type Marker is mod QueueSize;
 type List is array (Marker'Range) of Element;
 type Queue_State is (Empty, Filled);
 type Queue_Type is record
 Top, Free : Marker := Marker'First;
 State : Queue_State := Empty;
 Elements : List;
 end record;
end Queue_Pack_Generic;

© 2006 Uwe R. Zimmer, The Australian National University Page 27 of 516 (Chapter 1: to 54)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

A generic queue implementation
package body Queue_Pack_Generic is

 procedure Enqueue (Item: in Element; Queue: in out Queue_Type) is
 begin
 if Queue.State = Filled and Queue.Top = Queue.Free then
 raise Queueoverflow;
 end if;
 Queue.Elements (Queue.Free) := Item;
 Queue.Free := Queue.Free - 1;
 Queue.State := Filled;
 end Enqueue;

 procedure Dequeue (Item: out Element; Queue: in out Queue_Type) is
 begin
 if Queue.State = Empty then
 raise Queueunderflow;
 end if;
 Item := Queue.Elements (Queue.Top);
 Queue.Top := Queue.Top - 1;
 if Queue.Top = Queue.Free then Queue.State := Empty; end if;
 end Dequeue;

end Queue_Pack_Generic;

identical

© 2006 Uwe R. Zimmer, The Australian National University Page 28 of 516 (Chapter 1: to 54)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

A generic queue test program

with Queue_Pack_Generic;
with Ada.Text_IO; use Ada.Text_IO;

procedure Queue_Test_Generic is

 package Queue_Pack_Positive is
 new Queue_Pack_Generic (Element => Positive);
 use Queue_Pack_Positive;

 Queue : Queue_Type;
 Item : Positive;

begin
 Enqueue (Item => 1, Queue => Queue);
 Dequeue (Item, Queue);
 Dequeue (Item, Queue); -- will produce a 'Queue underflow'

exception
 when Queueunderflow => Put ("Queue underflow");
 when Queueoverflow => Put ("Queue overflow");
end Queue_Test_Generic;

© 2006 Uwe R. Zimmer, The Australian National University Page 29 of 516 (Chapter 1: to 54)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Ada95

Object oriented programming I
… introducing:

• tagged types ☞ the Ada-way to say that this type can be extended

• derivation of tagged types

• method overwriting

• usage of parent entities

© 2006 Uwe R. Zimmer, The Australian National University Page 30 of 516 (Chapter 1: to 54)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

An open queue base class specification

package Queue_Pack_Object_Base is

 QueueSize : constant Integer := 10;
 type Element is new Positive range 1..1000;
 type Marker is mod QueueSize;
 type List is array (Marker'Range) of Element;
 type Queue_State is (Empty, Filled);
 type Queue_Type is tagged record
 Top, Free : Marker := Marker'First;
 State : Queue_State := Empty;
 Elements : List;
 end record;

 procedure Enqueue (Item: in Element; Queue: in out Queue_Type);
 procedure Dequeue (Item: out Element; Queue: in out Queue_Type);

 Queueoverflow, Queueunderflow : exception;

end Queue_Pack_Object_Base;

© 2006 Uwe R. Zimmer, The Australian National University Page 31 of 516 (Chapter 1: to 54)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

An open queue base class implementation

package body Queue_Pack_Object_Base is

 procedure Enqueue (Item: in Element; Queue: in out Queue_Type) is
 begin
 if Queue.State = Filled and Queue.Top = Queue.Free then
 raise Queueoverflow;
 end if;
 Queue.Elements (Queue.Free) := Item;
 Queue.Free := Queue.Free - 1;
 Queue.State := Filled;
 end Enqueue;

 procedure Dequeue (Item: out Element; Queue: in out Queue_Type) is
 begin
 if Queue.State = Empty then
 raise Queueunderflow;
 end if;
 Item := Queue.Elements (Queue.Top);
 Queue.Top := Queue.Top - 1;
 if Queue.Top = Queue.Free then Queue.State := Empty; end if;
 end Dequeue;
end Queue_Pack_Object_Base;

identical

© 2006 Uwe R. Zimmer, The Australian National University Page 32 of 516 (Chapter 1: to 54)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

A derived open queue class specification

with Queue_Pack_Object_Base; use Queue_Pack_Object_Base;

package Queue_Pack_Object is

 type Ext_Queue_Type is new Queue_Type with record
 Reader : Marker := Marker'First;
 Reader_State : Queue_State := Empty;
 end record;

 procedure Enqueue (Item: in Element; Queue: in out Ext_Queue_Type);
 procedure Read_Queue (Item: out Element; Queue: in out Ext_Queue_Type);

end Queue_Pack_Object;

© 2006 Uwe R. Zimmer, The Australian National University Page 33 of 516 (Chapter 1: to 54)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

A derived open queue class implementation

package body Queue_Pack_Object is

 procedure Enqueue (Item: in Element; Queue: in out Ext_Queue_Type) is
 begin
 Enqueue (Item, Queue_Type (Queue));
 Queue.Reader_State := Filled;
 end Enqueue;

 procedure Read_Queue (Item: out Element; Queue: in out Ext_Queue_Type) is
 begin
 if Queue.Reader_State = Empty then
 raise Queueunderflow;
 end if;
 Item := Queue.Elements (Queue.Reader);
 Queue.Reader := Queue.Reader - 1;
 if Queue.Reader = Queue.Free then Queue.Reader_State := Empty; end if;
 end Read_Queue;

end Queue_Pack_Object;

© 2006 Uwe R. Zimmer, The Australian National University Page 34 of 516 (Chapter 1: to 54)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

An open class test program

with Queue_Pack_Object_Base; use Queue_Pack_Object_Base;
with Queue_Pack_Object; use Queue_Pack_Object;
with Ada.Text_IO; use Ada.Text_IO;

procedure Queue_Test_Object is

 Queue : Ext_Queue_Type;
 Item : Element;

begin
 Enqueue (Item => 1, Queue => Queue);
 Read_Queue (Item, Queue);
 Enqueue (Item => 5, Queue => Queue);
 Dequeue (Item, Queue);
 Dequeue (Item, Queue);
 Dequeue (Item, Queue); -- will produce a 'Queue underflow'

exception
 when Queueunderflow => Put ("Queue underflow");
 when Queueoverflow => Put ("Queue overflow");
end Queue_Test_Object;

© 2006 Uwe R. Zimmer, The Australian National University Page 35 of 516 (Chapter 1: to 54)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Ada95

Object oriented programming II
… introducing:

• private tagged types

• objects which are protected against their children also

© 2006 Uwe R. Zimmer, The Australian National University Page 36 of 516 (Chapter 1: to 54)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

An encapsulated queue base class specification

package Queue_Pack_Object_Base_Private is

 QueueSize : constant Integer := 10;
 type Element is new Positive range 1..1000;
 type Queue_Type is tagged limited private;

 procedure Enqueue (Item: in Element; Queue: in out Queue_Type);
 procedure Dequeue (Item: out Element; Queue: in out Queue_Type);

 Queueoverflow, Queueunderflow : exception;

private
 type Marker is mod QueueSize;
 type List is array (Marker'Range) of Element;
 type Queue_State is (Empty, Filled);
 type Queue_Type is tagged limited record
 Top, Free : Marker := Marker'First;
 State : Queue_State := Empty;
 Elements : List;
 end record;

end Queue_Pack_Object_Base_Private;

© 2006 Uwe R. Zimmer, The Australian National University Page 37 of 516 (Chapter 1: to 54)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

An encapsulated queue base class implementation

package body Queue_Pack_Object_Base_Private is

 procedure Enqueue (Item: in Element; Queue: in out Queue_Type) is
 begin
 if Queue.State = Filled and Queue.Top = Queue.Free then
 raise Queueoverflow;
 end if;
 Queue.Elements (Queue.Free) := Item;
 Queue.Free := Queue.Free - 1;
 Queue.State := Filled;
 end Enqueue;

 procedure Dequeue (Item: out Element; Queue: in out Queue_Type) is
 begin
 if Queue.State = Empty then
 raise Queueunderflow;
 end if;
 Item := Queue.Elements (Queue.Top);
 Queue.Top := Queue.Top - 1;
 if Queue.Top = Queue.Free then Queue.State := Empty; end if;
 end Dequeue;

end Queue_Pack_Object_Base_Private;

identical

© 2006 Uwe R. Zimmer, The Australian National University Page 38 of 516 (Chapter 1: to 54)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

A derived encapsulated queue class specification

with Queue_Pack_Object_Base_Private; use Queue_Pack_Object_Base_Private;

package Queue_Pack_Object_Private is

 type Ext_Queue_Type is new Queue_Type with private;
 subtype Depth_Type is Positive range 1..QueueSize;

 procedure Look_Ahead (Item: out Element;
 Depth: in Depth_Type; Queue: in out Ext_Queue_Type);

private
 type Ext_Queue_Type is new Queue_Type with null record;

end Queue_Pack_Object_Private;

© 2006 Uwe R. Zimmer, The Australian National University Page 39 of 516 (Chapter 1: to 54)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

A derived encapsulated queue class implementation

package body Queue_Pack_Object_Private is

 procedure Look_Ahead (Item: out Element;
 Depth: in Depth_Type; Queue: in out Ext_Queue_Type) is

 Storage : Queue_Type;
 ShuffleItem : Element;

 begin
 for I in 1..Depth - 1 loop
 Dequeue (ShuffleItem, Queue);
 Enqueue (ShuffleItem, Storage);
 end loop;
 Dequeue (Item, Queue);
 Enqueue (Item, Storage);
(…)

© 2006 Uwe R. Zimmer, The Australian National University Page 40 of 516 (Chapter 1: to 54)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

(…)

 Read_The_Rest:
 begin
 for I in 1..QueueSize - Depth loop
 Dequeue (ShuffleItem, Queue);
 Enqueue (ShuffleItem, Storage);
 end loop;
 exception
 when Queueunderflow => null; -- read the rest is done
 end Read_The_Rest;
 Restore_The_Queue:
 begin
 for I in 1..QueueSize loop
 Dequeue (ShuffleItem, Storage);
 Enqueue (ShuffleItem, Queue);
 end loop;
 exception
 when Queueunderflow => null; -- restore is done
 end Restore_The_Queue;

 end Look_Ahead;

end Queue_Pack_Object_Private;

bad

© 2006 Uwe R. Zimmer, The Australian National University Page 41 of 516 (Chapter 1: to 54)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

An encapsulated class test program

with Queue_Pack_Object_Base_Private; use Queue_Pack_Object_Base_Private;
with Queue_Pack_Object_Private; use Queue_Pack_Object_Private;
with Ada.Text_IO; use Ada.Text_IO;

procedure Queue_Test_Object_Private is

 Queue : Ext_Queue_Type;
 Item : Element;

begin
 Enqueue (Item => 1, Queue => Queue);
 Enqueue (Item => 1, Queue => Queue);
 Look_Ahead (Item => Item, Depth => 2, Queue => Queue);
 Enqueue (Item => 5, Queue => Queue);
 Dequeue (Item, Queue);
 Dequeue (Item, Queue);
 Dequeue (Item, Queue);
 Dequeue (Item, Queue); -- will produce a 'Queue underflow'

exception
 when Queueunderflow => Put ("Queue underflow");
 when Queueoverflow => Put ("Queue overflow");
end Queue_Test_Object_Private;

© 2006 Uwe R. Zimmer, The Australian National University Page 42 of 516 (Chapter 1: to 54)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Ada95

Tasks & Monitors
… introducing:

• protected types

• tasks (definition, instantiation and termination)

• task synchronisation

• entry guards

• entry calls

• accept and selected accept statements

© 2006 Uwe R. Zimmer, The Australian National University Page 43 of 516 (Chapter 1: to 54)

A protected queue specification

Package Queue_Pack_Protected is

 QueueSize : constant Integer := 10;
 subtype Element is Character;
 type Queue_Type is limited private;

 Protected type Protected_Queue is

 entry Enqueue (Item: in Element);
 entry Dequeue (Item: out Element);

 private
 Queue : Queue_Type;

 end Protected_Queue;

private
 type Marker is mod QueueSize;
 type List is array (Marker'Range) of Element;
 type Queue_State is (Empty, Filled);
 type Queue_Type is record
 Top, Free : Marker := Marker'First;
 State : Queue_State := Empty;
 Elements : List;
 end record;
end Queue_Pack_Protected;

© 2006 Uwe R. Zimmer, The Australian National University Page 44 of 516 (Chapter 1: to 54)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

A protected queue implementation

package body Queue_Pack_Protected is

 protected body Protected_Queue is

 entry Enqueue (Item: in Element) when
 Queue.State = Empty or Queue.Top /= Queue.Free is
 begin
 Queue.Elements (Queue.Free) := Item;
 Queue.Free := Queue.Free - 1;
 Queue.State := Filled;
 end Enqueue;

 entry Dequeue (Item: out Element) when
 Queue.State = Filled is
 begin
 Item := Queue.Elements (Queue.Top);
 Queue.Top := Queue.Top - 1;
 if Queue.Top = Queue.Free then Queue.State := Empty; end if;
 end Dequeue;

 end Protected_Queue;
end Queue_Pack_Protected;

© 2006 Uwe R. Zimmer, The Australian National University Page 45 of 516 (Chapter 1: to 54)

A multitasking protected queue test program

with Queue_Pack_Protected; use Queue_Pack_Protected;
with Ada.Text_IO; use Ada.Text_IO;

procedure Queue_Test_Protected is

 Queue : Protected_Queue;

 task Producer is entry shutdown; end Producer;
 task Consumer is end Consumer;

 task body Producer is
 Item : Element;
 Got_It : Boolean;
 begin
 loop
 select
 accept shutdown; exit; -- main task loop
 else
 Get_Immediate (Item, Got_It);
 if Got_It then
 Queue.Enqueue (Item); -- task might be blocked here!
 else
 delay 0.1; --sec.
 end if;
 end select;
 end loop;
 end Producer;

(…)

© 2006 Uwe R. Zimmer, The Australian National University Page 46 of 516 (Chapter 1: to 54)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

A multitasking protected queue test program (cont.)

(…)

 task body Consumer is
 Item : Element;
 begin
 loop
 Queue.Dequeue (Item); -- task might be blocked here!
 Put ("Received: "); Put (Item); Put_Line ("!");
 if Item = 'q' then
 Put_Line ("Shutting down producer"); Producer.Shutdown;
 Put_Line ("Shutting down consumer"); exit; -- main task loop
 end if;
 end loop;
 end Consumer;

begin
 null;
end Queue_Test_Protected;

© 2006 Uwe R. Zimmer, The Australian National University Page 47 of 516 (Chapter 1: to 54)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Ada95

Abstract types & dispatching
… introducing:

• abstract tagged types

• abstract subroutines

• concrete implementation of abstract types

• dispatching to different packages, tasks, and partitions
according to concrete types

© 2006 Uwe R. Zimmer, The Australian National University Page 48 of 516 (Chapter 1: to 54)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

An abstract queue specification

package Queue_Pack_Abstract is

 subtype Element is Character;
 type Queue_Type is abstract tagged limited private;

 procedure Enqueue (Item: in Element; Queue: in out Queue_Type) is
 abstract;
 procedure Dequeue (Item: out Element; Queue: in out Queue_Type) is
 abstract;

private
 type Queue_Type is abstract tagged limited null record;
end Queue_Pack_Abstract;

© 2006 Uwe R. Zimmer, The Australian National University Page 49 of 516 (Chapter 1: to 54)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

A concrete queue specification

with Queue_Pack_Abstract; use Queue_Pack_Abstract;

package Queue_Pack_Concrete is

 QueueSize : constant Integer := 10;
 type Real_Queue is new Queue_Type with private;

 procedure Enqueue (Item: in Element; Queue: in out Real_Queue);
 procedure Dequeue (Item: out Element; Queue: in out Real_Queue);

 Queueoverflow, Queueunderflow : exception;

private
 type Marker is mod QueueSize;
 type List is array (Marker'Range) of Element;
 type Queue_State is (Empty, Filled);
 type Real_Queue is new Queue_Type with record
 Top, Free : Marker := Marker'First;
 State : Queue_State := Empty;
 Elements : List;
 end record;
end Queue_Pack_Concrete;

© 2006 Uwe R. Zimmer, The Australian National University Page 50 of 516 (Chapter 1: to 54)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

A concrete queue implementation

package body Queue_Pack_Concrete is

 procedure Enqueue (Item: in Element; Queue: in out Real_Queue) is
 begin
 if Queue.State = Filled and Queue.Top = Queue.Free then
 raise Queueoverflow;
 end if;
 Queue.Elements (Queue.Free) := Item;
 Queue.Free := Queue.Free - 1;
 Queue.State := Filled;
 end Enqueue;

 procedure Dequeue (Item: out Element; Queue: in out Real_Queue) is
 begin
 if Queue.State = Empty then
 raise Queueunderflow;
 end if;
 Item := Queue.Elements (Queue.Top);
 Queue.Top := Queue.Top - 1;
 if Queue.Top = Queue.Free then Queue.State := Empty; end if;
 end Dequeue;

end Queue_Pack_Concrete;

© 2006 Uwe R. Zimmer, The Australian National University Page 51 of 516 (Chapter 1: to 54)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

A multitasking dispatching test program

with Queue_Pack_Abstract; use Queue_Pack_Abstract;
with Queue_Pack_Concrete; use Queue_Pack_Concrete;

procedure Queue_Test_Dispatching is

 type Queue_Class is access all Queue_Type'class;

 task Queue_Holder is -- could be on an individual partition
 entry Queue_Filled;
 end Queue_Holder;

 task Queue_User is -- could be on an individual partition
 entry Send_Queue (Remote_Queue: in Queue_Class);
 end Queue_User;
(…)

© 2006 Uwe R. Zimmer, The Australian National University Page 52 of 516 (Chapter 1: to 54)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

 task body Queue_Holder is
 Local_Queue : Queue_Class;
 Item : Element;
 begin
 Local_Queue := new Real_Queue; -- could be a different implementation!
 Queue_User.Send_Queue (Local_Queue);
 accept Queue_Filled do
 Dequeue (Item, Local_Queue.all); -- Item will be 'r'
 end Queue_Filled;
 end Queue_Holder;

 task body Queue_User is
 Local_Queue : Queue_Class;
 Item : Element;
 begin
 Local_Queue := new Real_Queue; -- could be a different implementation!
 accept Send_Queue (Remote_Queue: in Queue_Class) do
 Enqueue ('r', Remote_Queue.all); -- potentially a rpc!
 Enqueue ('l', Local_Queue.all);
 end Send_Queue;
 Queue_Holder.Queue_Filled;
 Dequeue (Item, Local_Queue.all); -- Item will be 'l'
 end Queue_User;

begin null; end Queue_Test_Dispatching;

© 2006 Uwe R. Zimmer, The Australian National University Page 53 of 516 (Chapter 1: to 54)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Ada95

Ada95 language status
• Established language standard with free and

commercial compilers available for all major OSs.

• Stand-alone runtime environments for embedded systems
(some are only available commercially).

• Special (yet non-standard) extensions (i.e. language reductions and
proof systems) for extreme small footprint embedded systems or high
integrity real-time environments available ☞ Ravenscar profile systems.

☞ has been used and is in use in numberless large scale projects
(e.g. in the international space station, and in some spectacular crashes: e.g. Ariane 5)

☞ Ada2005 compilers are available now!

© 2006 Uwe R. Zimmer, The Australian National University Page 54 of 516 (Chapter 1: to 54)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Summary

Ada refresher course
• Specification and implementation (body) parts, basic types

• Exceptions

• Information hiding in specifications (‘private’)

• Generic programming

• Class-wide programming (‘tagged types’)

• Monitors and synchronisation (‘protected’, ‘entries’, ‘selects’, ‘accepts’)

• Abstract types and dispatching

2
Concurrency – The Basic Concepts

Uwe R. Zimmer
The Australian National University

© 2006 Uwe R. Zimmer, The Australian National University Page 56 of 516 (Chapter 2: to 101)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

References for this chapter

[Ben-Ari90]
M. Ben-Ari
Principles of Concurrent
and Distributed Programming
1990
Prentice-Hall,
ISBN 0-13-711821-X

© 2006 Uwe R. Zimmer, The Australian National University Page 57 of 516 (Chapter 2: to 101)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Forms of concurrency

What is concurrency?
Working definitions:

• literally ‘concurrent’ means:

Adj.: Running together in space, as parallel lines; going on side by side,
as proceedings; occurring together, as events or circumstances; existing
or arising together; conjoint, associated [Oxfords English Dictionary]

• technically ‘concurrent’ is usually defined negatively as:

If there is no observer who can identify two events as being in strict tem-
poral sequence (i.e. one event has fully terminated before the other one
started) then these two events are considered concurrent.

© 2006 Uwe R. Zimmer, The Australian National University Page 58 of 516 (Chapter 2: to 101)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Forms of concurrency

Why do we need/have concurrency?
• Physics, engineering, electronics, biology, …

☞ basically every real world system is concurrent!
• Sequential processing is suggested by most kernel computer architectures

… but almost all current processor architectures have concurrent elements
… and most computer systems are part of a concurrent network

• Strict sequential processing is suggested by the most widely used programming languages

… which is a reason why you might believe that concurrent computing is rare/exotic/hard

☞ sequential programming delivers some fundamental parts for
concurrent programming

☞ but we need to add a number of further crucial concepts

© 2006 Uwe R. Zimmer, The Australian National University Page 59 of 516 (Chapter 2: to 101)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Forms of concurrency

Why would a computer scientist consider concurrency?

☞ … to be able to connect computer systems with the real world

☞ … to be able to employ / design concurrent parts of computer architectures

☞ … to construct complex software packages (operating systems, compilers, databases, …)

☞ … to understand where sequential and/or concurrent programming is required

… or: to understand where sequential or concurrent programming can be chosen freely

☞ … to enhance the reactivity of a system

☞ …

© 2006 Uwe R. Zimmer, The Australian National University Page 60 of 516 (Chapter 2: to 101)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Forms of concurrency

A computer scientist’s view on concurrency
• Overlapped I/O and computation

☞ employ interrupt programming
to handle I/O

• Multi-programming

☞ allow multiple independent programs
to be executed on one cpu

• Multi-tasking

☞ allow multiple interacting processes
to be executed on one cpu

• Multi-processor systems

☞ add physical/real concurrency

• Parallel Machines &
distributed operating systems

☞ add (non-deterministic)
communication channels

• General network architectures

☞ allow for any form of
communicating, distributed entities

© 2006 Uwe R. Zimmer, The Australian National University Page 61 of 516 (Chapter 2: to 101)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Forms of concurrency

A computer scientist’s view on concurrency

Terminology for real parallel machines architectures:

• SISD [singe instruction, single data]

☞ standard sequential processors

• SIMD [singe instruction, multiple data]

☞ vector processors

• MISD [multiple instruction, single data]

☞ pipelines

• MIMD [multiple instruction, multiple data]

☞ multiprocessors
or computer networks

© 2006 Uwe R. Zimmer, The Australian National University Page 62 of 516 (Chapter 2: to 101)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Forms of concurrency

An engineer’s view on concurrency

☞ Multiple physical, coupled, dynamical systems
form the actual environment and/or task at hand

☞ In order to model and control such a system, its inherent concurrency needs to be considered

☞ Multiple less powerful processors are often preferred over a single high-performance cpu

☞ The system design of usually strictly based on the structure of the given physical system.

© 2006 Uwe R. Zimmer, The Australian National University Page 63 of 516 (Chapter 2: to 101)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Forms of concurrency

Does concurrency lead to chaos?
Concurrency often leads to the following features / issues / problems:

• non-deterministic phenomena
• non-observable system states
• results may depend on more than just the input parameters and states at start time

(timing, throughput, load, available resources, signals … throughout the execution)
• non-reproducibility ☞ debugging?

Meaningful employment of concurrent systems features:

• non-determinism employed where the underlying system is non-deterministic
• non-determinism employed where the actual execution sequence is meaningless
• synchronization employed where adequate … but only there

☞ Control & monitor where required (and do it right), but not more …

© 2006 Uwe R. Zimmer, The Australian National University Page 64 of 516 (Chapter 2: to 101)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Models and Terminology

Concurrency on different abstraction levels / perspectives
☞ Networks

• Multi-CPU network nodes and other specialized sub-networks

• Single-CPU network nodes – still including buses & I/O sub-systems

• Single-CPUs

• Operating systems (& distributed operating systems)

☞ Processes & threads

☞ High-level concurrent programming

☞ Assembler level concurrent programming

• Individual concurrent units inside one CPU

• Individual electronic circuits

• …

© 2006 Uwe R. Zimmer, The Australian National University Page 65 of 516 (Chapter 2: to 101)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Models and Terminology

The concurrent programming abstraction

1.What appears sequential on a higher abstraction level,
is usually concurrent at a lower abstraction level:

☞ e.g. low-level concurrent I/O drivers, which might not be visible at a high programming level

2.What appears concurrent on a higher abstraction level,
might be sequential at a lower abstraction level:

☞ e.g. Multi-processing systems, which are executed on a single, sequential CPU

© 2006 Uwe R. Zimmer, The Australian National University Page 66 of 516 (Chapter 2: to 101)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Models and Terminology

The concurrent programming abstraction
• technically ‘concurrent’ is usually defined negatively as:

If there is no observer who can identify two events as being in strict tem-
poral sequence (i.e. one event has fully terminated before the other one
starts up), then these two events are considered concurrent.

• ‘concurrent’ in the context of programming:

“Concurrent programming abstraction is the study of interleaved execu-
tion sequences of the atomic instructions of sequential processes.”
(Ben-Ari)

© 2006 Uwe R. Zimmer, The Australian National University Page 67 of 516 (Chapter 2: to 101)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Models and Terminology

The concurrent programming abstraction

Concurrent program ::=
Multiple sequential programs (processes)

which are executed simultaneously

P.S. it is generally assumed that simultaneous execution means
that there is one execution unit (processor) per sequential program

– even though this is usually not correct,
it is an often valid assumption in the context of concurrent programming.

© 2006 Uwe R. Zimmer, The Australian National University Page 68 of 516 (Chapter 2: to 101)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Models and Terminology

The concurrent programming abstraction

☞ No interaction between concurrent system parts means
that we can analyse them individually as pure sequential programs.

☞ Interaction points:

• Contention:
multiple concurrent execution units compete for one shared resource

• Communication:
Explicit passing of information and/or synchronization

© 2006 Uwe R. Zimmer, The Australian National University Page 69 of 516 (Chapter 2: to 101)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Models and Terminology

The concurrent programming abstraction

Time-line or Sequence?

Consider time (durations) explicitly:

☞ Real-time systems ☞ join the appropriate courses

Consider the sequence of interaction points only:

☞ Non-real-time systems ☞ this course

© 2006 Uwe R. Zimmer, The Australian National University Page 70 of 516 (Chapter 2: to 101)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Models and Terminology

The concurrent programming abstraction

Correctness of concurrent non-real-time systems
[logical correctness]:

• does not depend on speeds / execution times / delays

• does not depend on actual interleaving of concurrent processes
[scheduler]

☞ does depend on all possible sequences of interaction points

© 2006 Uwe R. Zimmer, The Australian National University Page 71 of 516 (Chapter 2: to 101)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Models and Terminology

The concurrent programming abstraction

Correctness vs. testing in concurrent systems:
Slight changes in external triggers may (and usually will) result in
complete different schedules (interleaving):

☞ Concurrent programs which depend in any way on external influences cannot be tested easily

☞ Designs which are provably correct with respect to the specification
and are independent of the actual timing behaviour are essential.

P.S. some timing restrictions for the scheduling still persist in non-real-time systems, e.g. ‘fairness’

© 2006 Uwe R. Zimmer, The Australian National University Page 72 of 516 (Chapter 2: to 101)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Models and Terminology

The concurrent programming abstraction

Atomic operations:
Correctness proofs / designs in concurrent systems rely on the assumptions of

‘atomic operations’ [detailed discussion later]:

• complex and powerful atomic operations ease the correctness proofs,
but may limit flexibility in the design

• simple atomic operations are theoretically sufficient,
but may lead to complex systems which correctness cannot be proven in practice.

© 2006 Uwe R. Zimmer, The Australian National University Page 73 of 516 (Chapter 2: to 101)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Models and Terminology

The concurrent programming abstraction

Standard concepts of correctness:

• Partial correctness:

• Total correctness:

where are input and output sets,
 is a property on the input set,

and is a relation between input and output sets

☞ do these concepts apply to and are sufficient for concurrent systems?

P I() terminates Program I O,()()∧() Q I O,()⇒

P I() terminates Program I O,()() Q I O,()∧()⇒

I O,
P

Q

© 2006 Uwe R. Zimmer, The Australian National University Page 74 of 516 (Chapter 2: to 101)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Models and Terminology

The concurrent programming abstraction

Extended concepts of correctness in concurrent systems:

¬ Termination is often not intended or even considered a failure

• Safety properties:

where means that does always hold

• Liveness properties:

where means that does eventually hold (and will then stay true)
and is the current state of the concurrent system

P I() Processes I S,()∧() Q I S,()⇒
Q Q

P I() Processes I S,()∧() Q I S,()◊⇒
 Q◊ Q

S

© 2006 Uwe R. Zimmer, The Australian National University Page 75 of 516 (Chapter 2: to 101)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Models and Terminology

The concurrent programming abstraction

• Safety properties:

where means that does always hold

Examples:

• Mutual exclusion (no resource collisions)

• Absence of deadlocks
(and other forms of ‘silent death’ and ‘freeze’ conditions)

• Specified responsiveness or free capabilities
(typical in real-time / embedded systems or server applications)

P I() Processes I S,()∧() Q I S,()⇒
Q Q

© 2006 Uwe R. Zimmer, The Australian National University Page 76 of 516 (Chapter 2: to 101)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Models and Terminology

The concurrent programming abstraction

• Liveness properties:

where means that does eventually hold (and will then stay true)

Examples:

• Requests need eventually to be completed

• The state of the system needs eventually be displayed to the outside

• No part of the system is to be delayed forever (fairness)

☞ Interesting liveness properties can be extremely hard to be proven

P I() Processes I S,()∧() Q I S,()◊⇒
 Q◊ Q

© 2006 Uwe R. Zimmer, The Australian National University Page 77 of 516 (Chapter 2: to 101)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Introduction to processes and threads

1 CPU
per control-flow

for specific configurations only:

• distributed µcontrollers

• physical process control
systems:
1 cpu per task,
connected via a typ. fast
bus-system (VME, PCI)

☞ no need for process
management

CPU
stack

code

CPU
stack

code

CPU stack code

address space 1

shared memory

CPU
stack

code

CPU stack code

CPU stack code

address space n

shared memory

…

© 2006 Uwe R. Zimmer, The Australian National University Page 78 of 516 (Chapter 2: to 101)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Introduction to processes and threads

1 CPU
for all control-flows

• OS: emulate one CPU for
every control-flow

☞ multi-tasking
operating system

• support for memory
protection becomes essential

stack
code

stack
code

stack code

address space 1

shared memory

stack
code

stack code

CPU

stack code

address space n

shared memory

…

© 2006 Uwe R. Zimmer, The Australian National University Page 79 of 516 (Chapter 2: to 101)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Introduction to processes and threads

Processes

• Process ::=
address space
+ control flow(s)

• Kernel has full knowledge
about all processes as well as
their requirements
and current resources
(see below)

stack
code

stack
code

stack code

address space 1

shared memory

stack
code

stack code

CPU

stack code

address space n

shared memory

…

p
ro

ce
ss

 1

p
ro

ce
ss

 n

© 2006 Uwe R. Zimmer, The Australian National University Page 80 of 516 (Chapter 2: to 101)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Introduction to processes and threads

Threads
Threads (individual control-flows)
can be handled:

• inside the kernel:

• kernel scheduling
• I/O block-releases

according to external
signal

• outside the kernel:

• user-level scheduling
• no signals to threads

stack
thread

stack
thread

stack thread

address space 1

shared memory

stack
thread

stack thread

CPU

stack thread

address space n

shared memory

…

p
ro

ce
ss

 1

p
ro

ce
ss

 n

© 2006 Uwe R. Zimmer, The Australian National University Page 81 of 516 (Chapter 2: to 101)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Introduction to processes and threads

Multi-processor-
systems

• The kernel may execute
multiple processes at a time.

☞ Address space and resource
restrictions of individual
CPUs and processes/threads
need to be considered.

☞ Caching, synchronization,
and memory protection need
to be adapted.

stack
thread

stack
thread

stack thread

address space 1

shared memory

stack
thread

stack thread

stack thread

address space n

shared memory

…

p
ro

ce
ss

 1

p
ro

ce
ss

 n

CPU CPU CPUCPU …

© 2006 Uwe R. Zimmer, The Australian National University Page 82 of 516 (Chapter 2: to 101)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Introduction to processes and threads

Symmetric Multi-
processing (SMP)

• all CPUs share the same
physical address space
(and access to resources)

☞ processes/threads can be
executed on
any available CPU

stack
thread

stack
thread

stack thread

address space 1

shared memory

stack
thread

stack thread

stack thread

address space n

shared memory

…

p
ro

ce
ss

 1

p
ro

ce
ss

 n

CPU CPU CPUCPU …

shared memory

p
h

ys
ic

al
 a

d
d

re
ss

 s
p

ac
e

© 2006 Uwe R. Zimmer, The Australian National University Page 83 of 516 (Chapter 2: to 101)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Introduction to processes and threads

Processes ↔ Threads
Also processes can share memory
and the exact interpretation of threads is different in different operating systems:

☞ Threads can be regarded as a group of processes, which share some resources
(☞ process-hierarchy)

☞ Due to the overlap in resources,
the attributes attached to threads are less than for ‘first-class-citizen-processes’

☞ Thread switching and inter-thread communications
can be more efficient than on full-process-level

☞ Scheduling of threads depends on the actual thread implementations:

• e.g. user-level control-flows, which the kernel has no knowledge about at all
• e.g. kernel-level control-flows, which are handled as processes with some restrictions

© 2006 Uwe R. Zimmer, The Australian National University Page 84 of 516 (Chapter 2: to 101)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Introduction to processes and threads

Process Control Blocks
• Process Id

• Process state:
{created, ready, executing, blocked, suspended, …}

• Scheduling info:
priorities, deadlines, consumed CPU-time, …

• CPU state:
saved/restored information while context switches
(incl. the program counter, stack pointer, …)

• Memory spaces / privileges:
memory base, limits, shared areas, …

• Allocated resources / privileges:
open and requested devices and files

… PCBs are usually enqueued at a certain state or condition

Process Id

Process state

Saved registers
(complete CPU state)

Scheduling info

Memory spaces /
privileges

Allocated resources /
privileges

Process Control Blocks (PCBs)

© 2006 Uwe R. Zimmer, The Australian National University Page 85 of 516 (Chapter 2: to 101)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Process states

• created: the task is ready to run,
but not yet considered by any dispatcher
– waiting for admission

• ready: ready to run
– waiting for a free CPU

• running: holds a CPU and executes

• blocked: not ready to run
– waiting for a a resource to become
available

blockedblocked

ready running

blocked

dispatch

timeout

block
release

created

admit

terminated

finish

m
ai

n
m

em
o

ry

© 2006 Uwe R. Zimmer, The Australian National University Page 86 of 516 (Chapter 2: to 101)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Process states

• created: the task is ready to run,
but not yet considered by any dispatcher
– waiting for admission

• ready: ready to run
– waiting for a free CPU

• running: holds a CPU and executes

• blocked: not ready to run
– waiting for a resource

• suspended states: swapped out of main
memory (not time critical processes)
– waiting for main memory space
(and other resources)

blockedblocked

ready running

blocked

dispatch

timeout

block
release

created

admit

terminated

finish

blockedblockedblocked, susp.

suspend (swap-out)

ready, susp.

suspend (swap out)

release

reload (swap in)

m
ai

n
m

em
o

ry
se

co
nd

ar
y

m
em

o
ry

© 2006 Uwe R. Zimmer, The Australian National University Page 87 of 516 (Chapter 2: to 101)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Process states

• created: the task is ready to run,
but not yet considered by any dispatcher
– waiting for admission

• ready: ready to run
– waiting for a free CPU

• running: holds a CPU and executes

• blocked: not ready to run
– waiting for a resource

• suspended states: swapped out of main
memory (not time critical processes)
– waiting for main memory space
(and other resources)

☞ dispatching and suspending
can be independent modules here

blockedblocked

ready running

blocked

dispatch

timeout

block
release

created

admit

terminated

finish

blockedblockedblocked, susp.

suspend (swap-out)

ready, susp.

suspend (swap out)

release

reload (swap in)

m
ai

n
m

em
o

ry
se

co
nd

ar
y

m
em

o
ry

© 2006 Uwe R. Zimmer, The Australian National University Page 88 of 516 (Chapter 2: to 101)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Process states

CPU
creation

batch ready

ready, suspended

blocked, suspended

blocked

pre-emption or cycle done

termination

block or synchronize

executing
admitted dispatch

unblock suspend (swap-out)

swap-in

swap-out

unblock

suspend (swap-out)

© 2006 Uwe R. Zimmer, The Australian National University Page 89 of 516 (Chapter 2: to 101)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

UNIX processes

In UNIX systems tasks are created by ‘cloning’
pid = fork ();

resulting in a duplication of the current process

• returning 0 to the newly created process (the ‘child’ process)

• returning the process id of the child process to the creating process (the ‘parent’ process)
or -1 for a failure

Frequent usage:
if (fork () == 0) {
… the child’s task …
… often implemented as: exec (“absolute path to executable file“, “args“);
exit (0); /* terminate child process */

} else {
… the parent’s task …
pid = wait (); /* wait for the termination of one child process */

}

© 2006 Uwe R. Zimmer, The Australian National University Page 90 of 516 (Chapter 2: to 101)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

UNIX processes

Communication between UNIX tasks (‘pipes’)
int data_pipe [2], c, rc;

if (pipe (data_pipe) == -1) {
perror (“no pipe“); exit (1);

}

if (fork () == 0) {
close (data_pipe [1]);
while ((rc = read
(data_pipe [0], &c, 1)) > 0) {
putchar (c);

}
if (rc == -1) {
perror (“pipe broken“);
close (data_pipe [0]);
exit (1);

}
close (data_pipe [0]); exit (0);

} else {

close (data_pipe [0]);
while ((c = getchar ()) > 0) {
if (write
(data_pipe[1], &c, 1) == -1) {
perror (“pipe broken“);
close (data_pipe [1]);
exit (1);

};
}
close (data_pipe [1]);
pid = wait ();

}

© 2006 Uwe R. Zimmer, The Australian National University Page 91 of 516 (Chapter 2: to 101)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Concurrent programming languages

Requirement
• Concept of tasks, threads or other potentially concurrent entities

Frequently requested essential elements
• Support for management or concurrent entities (create, terminate, …)

• Support for contention management (mutual exclusion, …)

• Support for synchronization (semaphores, monitors, …)

• Support for communication (message passing, shared memory, rpc, …)

• Support for protection (tasks, memory, devices, …)

© 2006 Uwe R. Zimmer, The Australian National University Page 92 of 516 (Chapter 2: to 101)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Concurrent programming languages

Language candidates

• Ada95, Chill, Erlang

• Occam, CSP

• Java, C#

• Modula-2

• Lisp, Haskell, Caml, Miranda

• Smalltalk, Squeak

• Prolog

• Esterel, Signal

Without any support for concurrency: Eiffel, C, C++, Pascal, Fortran, Cobol, Basic…

C-libraries & interfaces

• POSIX • MPI (message passing interface)

© 2006 Uwe R. Zimmer, The Australian National University Page 93 of 516 (Chapter 2: to 101)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Languages explicitly supporting concurrency: e.g. Ada95

Ada95 is a standardized (ISO/IEC 8652:1995(E)) ‘general purpose’ language
with core language primitives for

• strong typing, separate compilation (specification and implementation),
object-orientation,

• concurrency, monitors, rpcs, timeouts, scheduling, priority ceiling locks

• strong run-time environments

… and standardized language-annexes for

• additional real-time features, distributed programming,
system-level programming, numeric, informations systems,
safety and security issues.

© 2006 Uwe R. Zimmer, The Australian National University Page 94 of 516 (Chapter 2: to 101)

A protected queue specification

generic
 type Element is private;

package Queue_Pack_Protected_Generic is

 QueueSize : constant Integer := 10;
 type Queue_Type is limited private;

 protected type Protected_Queue is

 entry Enqueue (Item: in Element);
 entry Dequeue (Item: out Element);

 private
 Queue : Queue_Type;

 end Protected_Queue;

private
 type Marker is mod QueueSize;
 type List is array (Marker'Range) of Element;
 type Queue_State is (Empty, Filled);
 type Queue_Type is record
 Top, Free : Marker := Marker'First;
 State : Queue_State := Empty;
 Elements : List;
 end record;

end Queue_Pack_Protected_Generic;

© 2006 Uwe R. Zimmer, The Australian National University Page 95 of 516 (Chapter 2: to 101)

A protected queue implementation

package body Queue_Pack_Protected_Generic is

 protected body Protected_Queue is

 entry Enqueue (Item: in Element) when
 Queue.State = Empty or Queue.Top /= Queue.Free is
 begin
 Queue.Elements (Queue.Free) := Item;
 Queue.Free := Queue.Free - 1;
 Queue.State := Filled;
 end Enqueue;

 entry Dequeue (Item: out Element) when
 Queue.State = Filled is
 begin
 Item := Queue.Elements (Queue.Top);
 Queue.Top := Queue.Top - 1;
 if Queue.Top = Queue.Free then Queue.State := Empty; end if;
 end Dequeue;

 end Protected_Queue;
end Queue_Pack_Protected_Generic;

© 2006 Uwe R. Zimmer, The Australian National University Page 96 of 516 (Chapter 2: to 101)

A protected queue test task set

with Queue_Pack_Protected_Generic;
with Ada.Text_IO; use Ada.Text_IO;

procedure Queue_Test_Protected_Generic is

 package Queue_Pack_Protected_Character is
 new Queue_Pack_Protected_Generic (Element => Character);
 use Queue_Pack_Protected_Character;

 Queue : Protected_Queue;

 task Producer is entry shutdown; end Producer;
 task Consumer is end Consumer;

(…)

 … what’s left to do: implement the tasks ‘Producer’ and ‘Consumer’

© 2006 Uwe R. Zimmer, The Australian National University Page 97 of 516 (Chapter 2: to 101)

A protected queue test task set (producer)

(…)

 task body Producer is

 Item : Character;
 Got_It : Boolean;

 begin
 loop
 select
 accept shutdown; exit; -- main task loop
 else
 Get_Immediate (Item, Got_It);
 if Got_It then
 Queue.Enqueue (Item); -- task might be blocked here!
 else
 delay 0.1; --sec.
 end if;
 end select;
 end loop;
 end Producer;

(…)

© 2006 Uwe R. Zimmer, The Australian National University Page 98 of 516 (Chapter 2: to 101)

A protected queue test task set (consumer)

(…)

 task body Consumer is

 Item : Character;

 begin
 loop
 Queue.Dequeue (Item); -- task might be blocked here!
 Put ("Received: "); Put (Item); Put_Line ("!");

 if Item = 'q' then
 Put_Line ("Shutting down producer"); Producer.Shutdown;
 Put_Line ("Shutting down consumer"); exit; -- main task loop
 end if;

 end loop;
 end Consumer;

begin
 null;
end Queue_Test_Protected_Generic;

© 2006 Uwe R. Zimmer, The Australian National University Page 99 of 516 (Chapter 2: to 101)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Ada95

Ada95 language status
• Established language standard with free and

commercial compilers available for all major OSs.

• Stand-alone runtime environments for embedded systems
(some are only available commercially).

• Special (yet non-standard) extensions (i.e. language reductions and
proof systems) for extreme small footprint embedded systems or high
integrity real-time environments available ☞ Ravenscar profile systems.

☞ has been used and is in use in numberless large scale projects
(e.g. in the international space station, and in some spectacular crashes: e.g. Ariane 5)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Languages suggesting concurrency: e.g. functional programming

Implicit concurrency in some programming schemes
qsort [] = []
qsort (x:xs) = qsort [y | y <- xs, y < x] ++ [x] ++ qsort [y | y <- xs, y >= x]

Strict functional programming is side-effect free

☞ Parameters can be evaluated independently ☞ concurrently

Some functional languages allow for ‘lazy evaluation’,
i.e. sub-expressions are not necessarily evaluated completely:

borderline = (n /= 0) && (g (n) > h (n))

☞ if n equals zero the evaluation of g(n) and h(n) can be stopped (or not even be started)
☞ concurrent program parts need to be interruptible in this case

(Lazy) sub-expression evaluations in imperative languages assume sequential execution:

if Pointer /= nil and then Pointer.next = nil then …

© 2006 Uwe R. Zimmer, The Australian National University Page 101 of 516 (Chapter 2: to 101)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Summary

Concurrency – The Basic Concepts
• Forms of concurrency

• Models and terminology

• Abstractions and perspectives: computer science, physics & engineering
• Observations: non-determinism, atomicity, interaction, interleaving
• Correctness in concurrent systems

• Processes and threads

• Basic concepts and notions
• Process states

• First examples of concurrent programming languages:

• Explicit concurrency: Ada95
• Implicit concurrency: functional programming – Lisp, Haskell, Caml, Miranda

3
Mutual Exclusion

Uwe R. Zimmer
The Australian National University

© 2006 Uwe R. Zimmer, The Australian National University Page 103 of 516 (Chapter 3: to 127)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

References for this chapter

[Ben-Ari90]
M. Ben-Ari
Principles of Concurrent
and Distributed Programming
1990
Prentice-Hall,
ISBN 0-13-711821-X

© 2006 Uwe R. Zimmer, The Australian National University Page 104 of 516 (Chapter 3: to 127)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Problem specification

The general mutual exclusion scenario
• N processes execute (infinite) instruction sequences concurrently.

Each instruction belongs to either a critical or non-critical section.

☞ Safety property ‘Mutual exclusion’:

Instructions from critical sections of two or more processes
must never be interleaved!

• More required properties:

• No deadlocks: If one or multiple processes try to enter their critical sections
then exactly one of them must succeed.

• No starvation: Every process which tries to enter one of his critical sections
must succeed eventually.

• Efficiency: The decision which process may enter the critical section
must be made efficiently in all cases, i.e. also when there is no contention.

© 2006 Uwe R. Zimmer, The Australian National University Page 105 of 516 (Chapter 3: to 127)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Problem specification

The general mutual exclusion scenario
• N processes execute (infinite) instruction sequences concurrently.

Each instruction belongs to either a critical or non-critical section.

☞ Safety property ‘Mutual exclusion’:

Instructions from critical sections of two or more processes
must never be interleaved!

• Further assumptions:

• Pre- and post-protocols can be executed before and after each critical section.
• Processes may delay infinitely in non-critical sections.
• Processes do not delay infinitely in critical sections.

© 2006 Uwe R. Zimmer, The Australian National University Page 106 of 516 (Chapter 3: to 127)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Mutual exclusion: Atomic load & store operations

Atomic load & store operations
☞ Assumption 1: every individual base memory cell (word) load and store access is atomic

☞ Assumption 2: there is no atomic combined load-store access

G : Natural := 0; -- assumed to be mapped on a 1-word cell in memory

task body P1 is
begin
G := 1
G := G + G;

end P1;

task body P2 is
begin
G := 2
G := G + G;

end P2;

task body P3 is
begin
G := 3
G := G + G;

end P3;

☞ After the first global initialisation, G can have many values between 0 and 24

☞ After the first global initialisation, G will have exactly one value between 0 and 24

© 2006 Uwe R. Zimmer, The Australian National University Page 107 of 516 (Chapter 3: to 127)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Mutual exclusion: first attempt

Turn: Positive range 1..2 := 1;

task body P1 is
begin
loop
-- non_critical_section_1;
loop exit when Turn = 1; end loop;

-- critical_section_1;
Turn := 2;

end loop;
end P1;

task body P2 is
begin
loop
-- non_critical_section_2;
loop exit when Turn = 2; end loop;

-- critical_section_2;
Turn := 1;

end loop;
end P2;

☞ Mutual exclusion!

☞ No deadlock!

☞ No starvation!

☞ Locks up, if there is no contention!

© 2006 Uwe R. Zimmer, The Australian National University Page 108 of 516 (Chapter 3: to 127)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Mutual exclusion: second attempt

type Critical_Section_State is (In_CS, Out_CS);
C1, C2: Critical_Section_State := Out_CS;

task body P1 is
begin
loop
-- non_critical_section_1;
loop
exit when C2 = Out_CS;

end loop;
C1 := In_CS;

-- critical_section_1;
C1 := Out_CS;

end loop;
end P1;

task body P2 is
begin
loop
-- non_critical_section_2;
loop
exit when C1 = Out_CS;

end loop;
C2 := In_CS;

-- critical_section_2;
C2 := Out_CS;

end loop;
end P2;

☞ No mutual exclusion!

© 2006 Uwe R. Zimmer, The Australian National University Page 109 of 516 (Chapter 3: to 127)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Mutual exclusion: third attempt

type Critical_Section_State is (In_CS, Out_CS);
C1, C2: Critical_Section_State := Out_CS;

task body P1 is
begin
loop
-- non_critical_section_1;
C1 := In_CS;
loop
exit when C2 = Out_CS;

end loop;
-- critical_section_1;

C1 := Out_CS;
end loop;

end P1;

task body P2 is
begin
loop
-- non_critical_section_2;
C2 := In_CS;
loop
exit when C1 = Out_CS;

end loop;
-- critical_section_2;

C2 := Out_CS;
end loop;

end P2;

☞ Mutual exclusion!

© 2006 Uwe R. Zimmer, The Australian National University Page 110 of 516 (Chapter 3: to 127)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Mutual exclusion: third attempt

type Critical_Section_State is (In_CS, Out_CS);
C1, C2: Critical_Section_State := Out_CS;

task body P1 is
begin
loop
-- non_critical_section_1;
C1 := In_CS;
loop
exit when C2 = Out_CS;

end loop;
-- critical_section_1;

C1 := Out_CS;
end loop;

end P1;

task body P2 is
begin
loop
-- non_critical_section_2;
C2 := In_CS;
loop
exit when C1 = Out_CS;

end loop;
-- critical_section_2;

C2 := Out_CS;
end loop;

end P2;

☞ Mutual exclusion!

☞ Deadlock possible!

© 2006 Uwe R. Zimmer, The Australian National University Page 111 of 516 (Chapter 3: to 127)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Mutual exclusion: fourth attempt

type Critical_Section_State is (In_CS, Out_CS);
C1, C2: Critical_Section_State := Out_CS;

task body P1 is
begin
loop
-- non_critical_section_1;
C1 := In_CS;
loop
exit when C2 = Out_CS;
C1 := Out_CS;
C1 := In_CS;

end loop;
-- critical_section_1;

C1 := Out_CS;
end loop;

end P1;

task body P2 is
begin
loop
-- non_critical_section_2;
C2 := In_CS;
loop
exit when C1 = Out_CS;
C2 := Out_CS;
C2 := In_CS;

end loop;
-- critical_section_2;

C2 := Out_CS;
end loop;

end P2;

☞ Mutual exclusion!, No deadlock!

© 2006 Uwe R. Zimmer, The Australian National University Page 112 of 516 (Chapter 3: to 127)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Mutual exclusion: fourth attempt
type Critical_Section_State is (In_CS, Out_CS);
C1, C2: Critical_Section_State := Out_CS;

task body P1 is
begin
loop
-- non_critical_section_1;
C1 := In_CS;
loop
exit when C2 = Out_CS;
C1 := Out_CS;
C1 := In_CS;

end loop;
-- critical_section_1;

C1 := Out_CS;
end loop;

end P1;

task body P2 is
begin
loop
-- non_critical_section_2;
C2 := In_CS;
loop
exit when C1 = Out_CS;
C2 := Out_CS;
C2 := In_CS;

end loop;
-- critical_section_2;

C2 := Out_CS;
end loop;

end P2;

☞ Mutual exclusion!, No deadlock!

☞ Individual starvation & global livelock possible!

© 2006 Uwe R. Zimmer, The Australian National University Page 113 of 516 (Chapter 3: to 127)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Mutual exclusion: Decker’s Algorithm

type Critical_Section_State is (In_CS, Out_CS);
C1, C2: Critical_Section_State := Out_CS; Turn : Positive range 1..2 := 1;

task body P1 is
begin
loop
-- non_critical_section_1;
C1 := In_CS;
loop
exit when C2 = Out_CS;
if Turn = 2 then
C1 := Out_CS;
loop exit when Turn = 1;
end loop;
C1 := In_CS;

end if;
end loop;

-- critical_section_1;
C1 := Out_CS; Turn := 2;

end loop;
end P1;

task body P2 is
begin
loop
-- non_critical_section_2;
C2 := In_CS;
loop
exit when C1 = Out_CS;
if Turn = 1 then
C2 := Out_CS;
loop exit when Turn = 2;
end loop;
C2 := In_CS;

end if;
end loop;

-- critical_section_2;
C2 := Out_CS; Turn := 1;

end loop;
end P2;

☞ Mutual exclusion!

☞ No deadlock!

☞ No starvation!

☞ No livelock!

© 2006 Uwe R. Zimmer, The Australian National University Page 114 of 516 (Chapter 3: to 127)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Mutual exclusion: Peterson’s Algorithm

type Critical_Section_State is (In_CS, Out_CS);
C1, C2 : Critical_Section_State := Out_CS;
Last : Positive range 1..2 := 1;

task body P1 is
begin
loop
-- non_critical_section_1;
C1 := In_CS;
Last := 1;
loop
exit when C2 = Out_CS

or else Last /= 1;
end loop;

-- critical_section_1;
C1 := Out_CS;

end loop;
end P1;

task body P2 is
begin
loop
-- non_critical_section_2;
C2 := In_CS;
Last := 2;
loop
exit when C1 = Out_CS

or else Last /= 2;
end loop;

-- critical_section_2;
C2 := Out_CS;

end loop;
end P2;

☞ Mutual exclusion!

☞ No deadlock!

☞ No starvation!

☞ No livelock!

… and it’s simpler

© 2006 Uwe R. Zimmer, The Australian National University Page 115 of 516 (Chapter 3: to 127)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Problem specification

The general mutual exclusion scenario
• N processes execute (infinite) instruction sequences concurrently.

Each instruction belongs to either a critical or non-critical section.

☞ Safety property ‘Mutual exclusion’:

Instructions from critical sections of two or more processes
must never be interleaved!

• More required properties:

• No deadlocks: If one or multiple processes try to enter their critical sections
then exactly one of them must succeed.

• No starvation: Every process which tries to enter one of his critical sections
must succeed eventually.

• Efficiency: The decision which process may enter the critical section
must be made efficiently in all cases, i.e. also when there is no contention.

© 2006 Uwe R. Zimmer, The Australian National University Page 116 of 516 (Chapter 3: to 127)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Mutual exclusion: Bakery Algorithm

The idea of the Bakery Algorithm
A set of Processes competing for mutually exclusive execution of their critical regions.

Every process out of supplies: a globally readable number (‘ticket’) (initialized to ‘0’).

• Before a process enters a critical section:

• draws a new number
• is allowed to enter the critical section iff: : or

• After a process left a critical section:

• resets its

Issues:

☞ Can you ensure that processes won’t read each others ticket numbers while still calculating?

☞ Can you ensure that no two processes draw the same number?

N P1…PN
Pi P1…PN ti

Pi

Pi ti tj> j i≠∀;
Pi j i≠∀ ti tj< tj 0=

Pi

Pi ti 0=

© 2006 Uwe R. Zimmer, The Australian National University Page 117 of 516 (Chapter 3: to 127)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Mutual exclusion: Bakery Algorithm
type Choosing_State is (Yes, No);
Choosing: array (1..N) of Choosing_State := (others => No);
Number : array (1..N) of Natural := (others => 0);

task type P (I: Natural) is end P;

task body P is
begin
loop
-- non_critical_section_1;
Choosing (I) := Yes;
Number (I) := Max (Number) + 1;
Choosing (I) := No;

for J in 1..N loop
if J /= I then
loop
exit when Choosing (J) = No;

end loop;
loop
exit when
Number (J) = 0 or
Number (I) < Number (J) or
(Number (I) = Number (J)
and I < J);

end loop;
end if;

end loop;
-- critical_section_1;
Number (I) := 0;

end loop;
end P;

☞ Intensive communication
with all processes, even if just
one process tries to enter!

© 2006 Uwe R. Zimmer, The Australian National University Page 118 of 516 (Chapter 3: to 127)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Beyond atomic memory access

Realistic hardware support
Atomic test-and-set operations [Motorola 68xxx; Intel 80x86]:

• [L := C; C := 1]

Atomic exchange operations [Motorola 68xxx; Intel 80x86]:
• [Temp := L; L := C; C := Temp]

Memory cell reservations [Motorola PowerPC]:
• L := C; – by using a special instruction, which puts a ‘reservation’ on C

• … calculate a <new value> for C …

• C := <new value>;
– succeeds iff C was not manipulated by other processors or devices since the reservation

© 2006 Uwe R. Zimmer, The Australian National University Page 119 of 516 (Chapter 3: to 127)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Mutual exclusion: atomic test-and-set operation
type Flag is Natural range 0..1; C : Flag := 0;

task body Pi is

L : Flag;

begin
loop
-- non_critical_section_i;
loop
[L := C; C := 1]
exit when L = 0;

end loop;
-- critical_section_i;

C := 0;
end loop;

end Pi;

task body Pj is

L : Flag;

begin
loop
-- non_critical_section_j;
loop
[L := C; C := 1]
exit when L = 0;

end loop;
-- critical_section_j;

C := 0;
end loop;

end Pj;

☞ Mutual exclusion!, No deadlock!, No global live-lock! – for N processes

☞ Individual starvation possible!

© 2006 Uwe R. Zimmer, The Australian National University Page 120 of 516 (Chapter 3: to 127)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Mutual exclusion: atomic exchange operation
type Flag is Natural range 0..1; C : Flag := 0;

task body Pi is

L : Flag := 1;

begin
loop
-- non_critical_section_i;
loop
[Temp := L; L := C; C := Temp];
exit when L = 0;

end loop;
-- critical_section_i;

[Temp := L; L := C; C := Temp];
end loop;

end Pi;

task body Pj is

L : Flag := 1;

begin
loop
-- non_critical_section_j;
loop
[Temp := L; L := C; C := Temp];
exit when L = 0;

end loop;
-- critical_section_j;

[Temp := L; L := C; C := Temp];
end loop;

end Pj;

☞ Mutual exclusion!, No deadlock!, No global live-lock! – for N processes

☞ Individual starvation possible!

© 2006 Uwe R. Zimmer, The Australian National University Page 121 of 516 (Chapter 3: to 127)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Mutual exclusion: memory cell reservation
type Flag is Natural range 0..1; C : Flag := 0;

task body Pi is

L : Flag;

begin
loop
-- non_critical_section_i;
loop
L := C; -- reservation on C
C := 1; -- works if untouched
exit when Untouched and L = 0;

end loop;
-- critical_section_i;

C := 0;
end loop;

end Pi;

task body Pj is

L : Flag;

begin
loop
-- non_critical_section_j;
loop
L := C; -- reservation on C
C := 1; -- works if untouched
exit when Untouched and L = 0;

end loop;
-- critical_section_j;

C := 0;
end loop;

end Pj;

☞ Mutual exclusion!, No deadlock!, No global live-lock! – for N processes

☞ Individual starvation possible!

© 2006 Uwe R. Zimmer, The Australian National University Page 122 of 516 (Chapter 3: to 127)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Semaphores
Basic definition (Dijkstra 1968)

Assuming further that there is a shared memory between two processes:

• a set of processes agree on a variable S operating
as a flag to indicate synchronization conditions … and …

• an atomic operation P on S — P stands for ‘passeren’ (Dutch for ‘pass’):

• P(S): [if S > 0 then S := S - 1]

• an atomic operation V on S — V stands for ‘vrygeven’ (Dutch for ‘to release’):

• V(S): [S := S + 1]

☞ the variable S is then called a semaphore.

© 2006 Uwe R. Zimmer, The Australian National University Page 123 of 516 (Chapter 3: to 127)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Semaphores
… as supplied by operating systems

• a set of processes P(1) … P(N) agree on a variable S operating
as a flag to indicate synchronization conditions … and …

• an atomic operation Wait on S: — also: , ‘Suspend_Until_True’, ‘sem_wait’

• Process P(i): Wait (S):
[if S > 0

then S := S - 1
else “suspend P(i) on S”]

• an atomic operation Signal on S: — also: ‘Set_True’, ‘sem_post’

• Process P(i): Signal (S):
[if : “P(j) is suspended on S”

then “release P(j)”
else S := S + 1]

j∃ a release order is not specified!

© 2006 Uwe R. Zimmer, The Australian National University Page 124 of 516 (Chapter 3: to 127)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Semaphores

Types of semaphores:
• General semaphores (counting semaphores): non-negative number; (range limited by the system)
P and V increment and decrement the semaphore by one.

• Binary semaphores: restricted to [0, 1]; Multiple V (Signal) calls have the same effect than 1 call.

• binary semaphores are sufficient to create all other semaphore forms.
• atomic ‘test-and-set’ operations support binary semaphores at hardware level.

• Quantity semaphores: The increment (and decrement) value for the semaphore is specified as a
parameter with P and V.

☞ all types of semaphores must be initialized with a non-negative number:
often the number of processes which are allowed inside a critical section, i.e. “1”.

© 2006 Uwe R. Zimmer, The Australian National University Page 125 of 516 (Chapter 3: to 127)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Mutual exclusion: Semaphores

S : Semaphore := 1;

task body Pi is

begin
loop
-- non_critical_section_i;
wait (S);

-- critical_section_i;
signal (S);

end loop;
end Pi;

task body Pj is

begin
loop
-- non_critical_section_j;
wait (S);

-- critical_section_j;
signal (S);

end loop;
end Pj;

☞ Mutual exclusion!, No deadlock!, No global live-lock! – for N processes

☞ Individual starvation possible!

© 2006 Uwe R. Zimmer, The Australian National University Page 126 of 516 (Chapter 3: to 127)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Mutual exclusion: Semaphores

S1, S2: Semaphore := 1;

task body Pi is

begin
loop
-- non_critical_section_i;
wait (S1);
wait (S2);

-- critical_section_i;
signal (S2);
signal (S1);

end loop;
end Pi;

task body Pj is

begin
loop
-- non_critical_section_j;
wait (S2);
wait (S1);

-- critical_section_j;
signal (S1);
signal (S2);

end loop;
end Pj;

☞ Mutual exclusion!, No global live-lock!

☞ Individual starvation possible!

☞ Possible deadlock!

© 2006 Uwe R. Zimmer, The Australian National University Page 127 of 516 (Chapter 3: to 127)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Summary

Concurrency – The Basic Concepts
• Definition of mutual exclusion

• Atomic load and atomic store operations

• … some classical errors
• Decker’s algorithm, Peterson’s algorithm
• Bakery algorithm

• Realistic hardware support

• Atomic test-and-set, Atomic exchanges, Memory cell reservations

• Semaphores

• Basic semaphore definition
• Operating systems style semaphores

4
Synchronization

Uwe R. Zimmer
The Australian National University

© 2006 Uwe R. Zimmer, The Australian National University Page 129 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

References for this chapter

[Ben-Ari90]
M. Ben-Ari
Principles of Concurrent
and Distributed Programming
1990
Prentice-Hall,
ISBN 0-13-711821-X

[Bacon98]
J. Bacon
Concurrent Systems
1998 (2nd Edition)
Addison Wesley Longman Ltd,
ISBN 0-201-17767-6

[Ada95RM] (link to on-line version)
Ada Working Group
ISO/IEC JTC1/SC 22/WG 9
Ada 95 Reference Manual
– Language and Standard Libraries
ISO/IEC 8652:1995(E) with COR.1:2000,
June 2001

[Cohen96]
Norman H. Cohen
Ada as a second language
McGraw-Hill series in computer science, 2nd
edition

all references and links are available on the course page

© 2006 Uwe R. Zimmer, The Australian National University Page 130 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Synchronization methods
• Shared memory based synchronization

• Semaphores ☞ ‘C’, POSIX — Dijkstra
• Conditional critical regions ☞ Edison (experimental)
• Monitors ☞ Modula-1, Mesa — Dijkstra, Hoare, …
• Mutexes & conditional variables ☞ POSIX
• Synchronized methods ☞ Java
• Protected objects ☞ Ada95

• Message based synchronization

• Asynchronous messages ☞ e.g. POSIX, …
• Synchronous messages ☞ e.g. Ada95, CHILL, Occam2
• Remote invocation, remote procedure call ☞ e.g. Ada95, …
• Synchronization in distributed systems ☞ e.g. CORBA, …

© 2006 Uwe R. Zimmer, The Australian National University Page 131 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Synchronization in concurrent systems

All data is declared …

☞ … either local (and protected by language-, os-, or hardware-mechanisms)

☞ … or it is ‘out in the open’ and all access need to be synchronized!

© 2006 Uwe R. Zimmer, The Australian National University Page 132 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Synchronization in concurrent systems
Synchronization: the run-time overhead?
☞ Is the potential overhead justified for simple data-structures:

 int i;

 ……

 i++; | if i>n {i=0;}

{in one thread} {in another thread}

• Are those operations atomic?

• Do we really need to introduce full featured synchronization methods here?

© 2006 Uwe R. Zimmer, The Australian National University Page 133 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Synchronization in concurrent systems
 int i;

 ……

 i++; | if i>n {i=0;}

• Depending on the hardware and the compiler, it might be atomic, it might be not:

☞ Handling a 64-bit integer on a 8- or 16-bit controller will not be atomic
… but perhaps it is an 8-bit integer.

☞ Any manipulations on the main memory will usually not be atomic
… but perhaps it is a register.

☞ Broken down to a load-operate-store cycle, the operations will usually not be atomic
… but perhaps the processor supplies atomic operations for the actual case.

☞ Assuming that all ‘perhapses’ apply: how to expand this code?

© 2006 Uwe R. Zimmer, The Australian National University Page 134 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Synchronization in concurrent systems
 int i;

 ……

 i++; | if i>n {i=0;}

☞ Unfortunately: the chances that such programming errors turn out are usually small and some
implicit by chance synchronization in the rest of the system might prevent them at all.

• Many effects stemming from asynchronous memory accesses are interpreted as (hardware)
‘glitches’, since they are usually rare but then often disastrous.

• On assembler level: synchronization by employing knowledge about the atomicity of
CPU-operations and interrupt structures is nevertheless possible and done frequently.

In anything higher than assembler level on small, predictable µcontrollers:

☞ Measures for synchronization are required!

© 2006 Uwe R. Zimmer, The Australian National University Page 135 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Synchronization by flags
Word-access atomicity:

Assuming that any access to a word in the system is an atomic operation:

e.g. assigning two values (not wider than the size of word) to a memory cell simultaneously:

Task 1: x := 0; | Task 2: x := 5;

will result in either x = 0 xor x = 5 — and no other value is ever observable.

© 2006 Uwe R. Zimmer, The Australian National University Page 136 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Condition synchronization by flags

var Flag : boolean := false;

process P1;
 statement X;

 repeat until Flag;

 statement Y;
end P1;

process P2;
 statement A;

 Flag := true;

 statement B;
end P2;

Sequence of operations: [A | X] ➠ [B | Y]

© 2006 Uwe R. Zimmer, The Australian National University Page 137 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Synchronization by flags
Assuming further that there is a shared memory between two processes:

• A set of processes agree on a (word-size) atomic variable operating
as a flag to indicate synchronization conditions:

Memory flag method is ok for simple condition synchronization, but …

☞ … is not suitable for general mutual exclusion in critical sections!

☞ … busy-waiting is required to poll the synchronization condition!

☞ More powerful synchronization operations
are required for critical sections

© 2006 Uwe R. Zimmer, The Australian National University Page 138 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Synchronization by semaphores
(Dijkstra 1968)

Assuming further that there is a shared memory between two processes:

• a set of processes agree on a variable S operating
as a flag to indicate synchronization conditions … and …

• an atomic operation P on S — P stands for ‘passeren’ (Dutch for ‘pass’):

• P: [if S > 0 then S := S - 1] also: ‘Wait’, ‘Suspend_Until_True’

• an atomic operation V on S — V stands for ‘vrygeven’ (Dutch for ‘to release’):

• V: [S := S + 1] also: ‘Signal’, ‘Set_True’

☞ the variable S is then called a semaphore.

OS-level: P is usually also suspending the current task until S > 0.
CPU-level: P indicates whether it was successful, but the operation is not blocking.

© 2006 Uwe R. Zimmer, The Australian National University Page 139 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Condition synchronization by semaphores

var sync : semaphore := 0;

process P1;
 statement X;

 wait (sync);

 statement Y;
end P1;

process P2;
 statement A;

 signal (sync);

 statement B;
end P2;

Sequence of operations: [A | X] ➠ [B | Y]

© 2006 Uwe R. Zimmer, The Australian National University Page 140 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Mutual exclusion by semaphores

var mutex : semaphore := 1;

process P1;
 statement X;

 wait (mutex);
 statement Y;
 signal (mutex);

 statement Z;
end P1;

process P2;
 statement A;

 wait (mutex);
 statement B;
 signal (mutex);

 statement C;
end P2;

Sequence of operations: [A | X] ➠ [B ➠ Y xor Y ➠ B] ➠ [C | Z]

© 2006 Uwe R. Zimmer, The Australian National University Page 141 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Semaphores in Ada95
package Ada.Synchronous_Task_Control is

 type Suspension_Object is limited private;

 procedure Set_True (S : in out Suspension_Object);
 procedure Set_False (S : in out Suspension_Object);

 function Current_State (S : Suspension_Object) return Boolean;

 procedure Suspend_Until_True (S : in out Suspension_Object);

private
 … -- not specified by the language
end Ada.Synchronous_Task_Control;

• only one task can be blocked at Suspend_Until_True! (‘strict version of a binary semaphore’)
(Program_Error will be raised with the second task trying to suspend itself)

☞ no queues! ☞ minimal run-time overhead

© 2006 Uwe R. Zimmer, The Australian National University Page 142 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Semaphores in POSIX

int sem_init (sem_t *sem_location, int pshared, unsigned int value);
int sem_destroy (sem_t *sem_location);

int sem_wait (sem_t *sem_location);
int sem_trywait (sem_t *sem_location);
int sem_timedwait (sem_t *sem_location, const struct timespec *abstime);

int sem_post (sem_t *sem_location);

int sem_getvalue (sem_t *sem_location, int *value);

© 2006 Uwe R. Zimmer, The Australian National University Page 143 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Semaphores in POSIX

int sem_init (sem_t *sem_location, int pshared, unsigned int value);
int sem_destroy (sem_t *sem_location);

int sem_wait (sem_t *sem_location);
int sem_trywait (sem_t *sem_location);
int sem_timedwait (sem_t *sem_location, const struct timespec *abstime);

int sem_post (sem_t *sem_location);

int sem_getvalue (sem_t *sem_location, int *value);

generate semaphore for usage between processes
(otherwise for threads of the same process only)

© 2006 Uwe R. Zimmer, The Australian National University Page 144 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Semaphores in POSIX

int sem_init (sem_t *sem_location, int pshared, unsigned int value);
int sem_destroy (sem_t *sem_location);

int sem_wait (sem_t *sem_location);
int sem_trywait (sem_t *sem_location);
int sem_timedwait (sem_t *sem_location, const struct timespec *abstime);

int sem_post (sem_t *sem_location);

int sem_getvalue (sem_t *sem_location, int *value);

delivers the number of waiting processes as a negative integer,
if there are processes waiting on this semaphore

© 2006 Uwe R. Zimmer, The Australian National University Page 145 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

SynchronizationSynchronization

Semaphores in POSIX
void allocate (priority_t P)
{
 sem_wait (&mutex);
 if (busy) {
 sem_post (&mutex);
 sem_wait (&cond[P]);
 }
 busy = 1;
 sem_post (&mutex);
}

—————
sem_t mutex, cond[2];
typedef emun {low, high} priority_t;
int waiting
int busy

void deallocate (priority_t P)
{
 sem_wait (&mutex);
 busy = 0;
 sem_getvalue (&cond[high],
 &waiting);
 if (waiting < 0) {
 sem_post (&cond[high]);
 }
 else {
 sem_getvalue (&cond[low],
 &waiting);
 if (waiting < 0) {
 sem_post (&cond[low]);
 }
 else {
 sem_post (&mutex);
} } }

© 2006 Uwe R. Zimmer, The Australian National University Page 146 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Deadlock by semaphores
with Ada.Synchronous_Task_Control; use Ada.Synchronous_Task_Control;

X, Y : Suspension_Object;

task B;

task body B is

begin
 …

 Suspend_Until_True (Y);
 Suspend_Until_True (X);
 …
end B;

task A;

task body A is

begin
 …

 Suspend_Until_True (X);
 Suspend_Until_True (Y);
 …
end A;

☞ could raise a Program_Error in Ada95.

☞ produces a potential deadlock when implemented with general semaphores.

☞ Deadlocks can be generated by all kinds of synchronization methods.

© 2006 Uwe R. Zimmer, The Australian National University Page 147 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Criticism of semaphores

• Semaphores are not bound to any resource or method or region
☞ Adding or deleting a single semaphore operation some place might stall the whole system

• Semaphores are scattered all over the code
☞ hard to read, error-prone

☞ Semaphores are considered inadequate for non-trivial systems.

(all concurrent languages and environments offer efficient higher-level synchronization methods).

© 2006 Uwe R. Zimmer, The Australian National University Page 148 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Conditional critical regions

Basic idea:
• Critical regions are a set of code sections in different processes,

which are guaranteed to be executed in mutual exclusion:

• Shared data structures are grouped in named regions
and are tagged as being private resources.

• Processes are prohibited from entering a critical region,
when another process is active in any associated critical region.

• Condition synchronisation is provided by guards:

• When a process wishes to enter a critical region it evaluates the guard (under mutual
exclusion). If the guard evaluates false, the process is suspended / delayed.

• As with semaphores, no access order can be assumed.

© 2006 Uwe R. Zimmer, The Australian National University Page 149 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Conditional critical regions
buffer : buffer_t;

resource critial_buffer_region : buffer;

process producer;

 loop

 region critial_buffer_region
 when buffer.size < N do

 -- place in buffer etc.

 end region

 end loop;
end producer

process consumer;

 loop

 region critial_buffer_region
 when buffer.size > 0 do

 -- take from buffer etc.

 end region

 end loop;
end consumer

© 2006 Uwe R. Zimmer, The Australian National University Page 150 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Criticism of conditional critical regions
• All guards need to be re-evaluated,

when any conditional critical region is left:

☞ all involved processes are activated to test their guards
☞ there is no order in the re-evaluation phase ☞ potential livelocks

• As with semaphores the conditional critical regions
are scattered all over the code.

☞ on a larger scale: same problems as with semaphores.

The language Edison uses conditional critical regions
for synchronization in a multiprocessor environment
(each process is associated with exactly one processor).

© 2006 Uwe R. Zimmer, The Australian National University Page 151 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Monitors
(Modula-1, Mesa — Dijkstra, Hoare)

Basic idea:
• Collect all operations and data-structures shared in critical regions in one place, the monitor.

• Formulate all operations as procedures or functions.

• Prohibit access to data-structures, other than by the monitor-procedures and functions.

• Assure mutual exclusion of all monitor-procedures and functions.

© 2006 Uwe R. Zimmer, The Australian National University Page 152 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Monitors
monitor buffer;

 export append, take;

 var (* declare protected vars *)

 procedure append (I : integer);
 …

 procedure take (var I : integer);
 …

begin
 (* initialisation *)
end; How to realize conditional synchronization?

© 2006 Uwe R. Zimmer, The Australian National University Page 153 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Monitors with condition synchronization
(Hoare)

Hoare-monitors:

• Condition variables are implemented by semaphores (Wait and Signal).

• Queues for tasks suspended on condition variables are realized.

• A suspended task releases its lock on the monitor, enabling another task to enter.

☞ More efficient evaluation of the guards:
the task leaving the monitor can evaluate all guards and the right tasks can be activated.

☞ Blocked tasks may be ordered and livelocks prevented.

© 2006 Uwe R. Zimmer, The Australian National University Page 154 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Monitors with condition synchronization
monitor buffer;
 export append, take;
 var BUF : array […] of integer;
 top, base : 0..size-1;
 NumberInBuffer : integer;
 spaceavailable, itemavailable : condition;

 procedure append (I : integer);
 begin
 if NumberInBuffer = size then

 wait (spaceavailable);

 end if;
 BUF[top] := I; NumberInBuffer := NumberInBuffer+1;
 top := (top+1) mod size;

 signal (itemavailable)

 end append; …

© 2006 Uwe R. Zimmer, The Australian National University Page 155 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Monitors with condition synchronization
…
 procedure take (var I : integer);
 begin
 if NumberInBuffer = 0 then

 wait (itemavailable);

 end if;
 I := BUF[base];
 base := (base+1) mod size;
 NumberInBuffer := NumberInBuffer-1;

 signal (spaceavailable);

 end take;

begin (* initialisation *)
 NumberInBuffer := 0;
 top := 0; base := 0
end;

© 2006 Uwe R. Zimmer, The Australian National University Page 156 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Monitors with condition synchronization
…
 procedure take (var I : integer);
 begin
 if NumberInBuffer = 0 then

 wait (itemavailable);

 end if;
 I := BUF[base];
 base := (base+1) mod size;
 NumberInBuffer := NumberInBuffer-1;

 signal (spaceavailable);

 end take;

begin (* initialisation *)
 NumberInBuffer := 0;
 top := 0; base := 0
end;

The signalling and the
waiting process are both

active in the monitor!

© 2006 Uwe R. Zimmer, The Australian National University Page 157 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Monitors with condition synchronization

Suggestions to overcome the multiple-tasks-in-monitor-problem:

• A signal is allowed only as the last action of a process before it leaves the monitor.

• A signal operation has the side-effect of executing a return statement.

• Hoare, Modula-1, POSIX: a signal operation which unblocks another process
has the side-effect of blocking the current process;
this process will only execute again once the monitor is unlocked again.

• A signal operation which unblocks a process does not block the caller,
but the unblocked process must gain access to the monitor again.

© 2006 Uwe R. Zimmer, The Australian National University Page 158 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Monitors in Modula-1

• wait (s, r):
delays the caller until condition variable s is true (r is the rank (or ‘priority’) of the caller).

• send (s):
If a process is waiting for the condition variable s,
then the process at the top of the queue of the highest filled rank is activated
(and the caller suspended).

• awaited (s):
check for waiting processes on s.

© 2006 Uwe R. Zimmer, The Australian National University Page 159 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Monitors in Modula-1
INTERFACE MODULE resource_control;

 DEFINE allocate, deallocate;
 VAR busy : BOOLEAN; free : SIGNAL;

 PROCEDURE allocate;
 BEGIN
 IF busy THEN WAIT (free) END;
 busy := TRUE;
 END;

 PROCEDURE deallocate;
 BEGIN
 busy := FALSE;
 SEND (free); -- or: IF AWAITED (free) THEN SEND (free);
 END;

BEGIN
 busy := false;
END.

© 2006 Uwe R. Zimmer, The Australian National University Page 160 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Monitors in ‘C’ / POSIX
(types and creation)

Synchronization between POSIX-threads:

typedef … pthread_mutex_t;
typedef … pthread_mutexattr_t;
typedef … pthread_cond_t;
typedef … pthread_condattr_t;

int pthread_mutex_init (pthread_mutex_t *mutex,
 const pthread_mutexattr_t *attr);
int pthread_mutex_destroy (pthread_mutex_t *mutex);

int pthread_cond_init (pthread_cond_t *cond,
 const pthread_condattr_t *attr);
int pthread_cond_destroy (pthread_cond_t *cond);

…

© 2006 Uwe R. Zimmer, The Australian National University Page 161 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Monitors in ‘C’ / POSIX
(types and creation)

Synchronization between POSIX-threads:

typedef … pthread_mutex_t;
typedef … pthread_mutexattr_t;
typedef … pthread_cond_t;
typedef … pthread_condattr_t;

int pthread_mutex_init (pthread_mutex_t *mutex,
 const pthread_mutexattr_t *attr);
int pthread_mutex_destroy (pthread_mutex_t *mutex);

int pthread_cond_init (pthread_cond_t *cond,
 const pthread_condattr_t *attr);
int pthread_cond_destroy (pthread_cond_t *cond);

…

Attributes include:

• semantics for trying to lock a mutex which
is locked already by the same thread

• sharing of mutexes and
condition variables between processes

• priority ceiling

• clock used for timeouts

• … … …

© 2006 Uwe R. Zimmer, The Australian National University Page 162 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Monitors in ‘C’ / POSIX
(types and creation)

Synchronization between POSIX-threads:

typedef … pthread_mutex_t;
typedef … pthread_mutexattr_t;
typedef … pthread_cond_t;
typedef … pthread_condattr_t;

int pthread_mutex_init (pthread_mutex_t *mutex,
 const pthread_mutexattr_t *attr);
int pthread_mutex_destroy (pthread_mutex_t *mutex);

int pthread_cond_init (pthread_cond_t *cond,
 const pthread_condattr_t *attr);
int pthread_cond_destroy (pthread_cond_t *cond);

…

Undefined, if locked

Undefined, if threads are waiting

© 2006 Uwe R. Zimmer, The Australian National University Page 163 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Monitors in ‘C’ / POSIX
(operators)

…

int pthread_mutex_lock (pthread_mutex_t *mutex);
int pthread_mutex_trylock (pthread_mutex_t *mutex);
int pthread_mutex_timedlock (pthread_mutex_t *mutex,
 const struct timespec *abstime);
int pthread_mutex_unlock (pthread_mutex_t *mutex);

int pthread_cond_wait (pthread_cond_t *cond,
 pthread_mutex_t *mutex);
int pthread_cond_timedwait (pthread_cond_t *cond,
 pthread_mutex_t *mutex,
 const struct timespec *abstime);

int pthread_cond_signal (pthread_cond_t *cond);
int pthread_cond_broadcast (pthread_cond_t *cond);

© 2006 Uwe R. Zimmer, The Australian National University Page 164 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Monitors in ‘C’ / POSIX
(operators)

…

int pthread_mutex_lock (pthread_mutex_t *mutex);
int pthread_mutex_trylock (pthread_mutex_t *mutex);
int pthread_mutex_timedlock (pthread_mutex_t *mutex,
 const struct timespec *abstime);
int pthread_mutex_unlock (pthread_mutex_t *mutex);

int pthread_cond_wait (pthread_cond_t *cond,
 pthread_mutex_t *mutex);
int pthread_cond_timedwait (pthread_cond_t *cond,
 pthread_mutex_t *mutex,
 const struct timespec *abstime);

int pthread_cond_signal (pthread_cond_t *cond);
int pthread_cond_broadcast (pthread_cond_t *cond);

unblocking ‘at least one’ thread

unblocking all threads

© 2006 Uwe R. Zimmer, The Australian National University Page 165 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Monitors in ‘C’ / POSIX
(operators)

…

int pthread_mutex_lock (pthread_mutex_t *mutex);
int pthread_mutex_trylock (pthread_mutex_t *mutex);
int pthread_mutex_timedlock (pthread_mutex_t *mutex,
 const struct timespec *abstime);
int pthread_mutex_unlock (pthread_mutex_t *mutex);

int pthread_cond_wait (pthread_cond_t *cond,
 pthread_mutex_t *mutex);
int pthread_cond_timedwait (pthread_cond_t *cond,
 pthread_mutex_t *mutex,
 const struct timespec *abstime);

int pthread_cond_signal (pthread_cond_t *cond);
int pthread_cond_broadcast (pthread_cond_t *cond);

undefined,

if called out of order!

© 2006 Uwe R. Zimmer, The Australian National University Page 166 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Monitors in ‘C’ / POSIX
(operators)

…

int pthread_mutex_lock (pthread_mutex_t *mutex);
int pthread_mutex_trylock (pthread_mutex_t *mutex);
int pthread_mutex_timedlock (pthread_mutex_t *mutex,
 const struct timespec *abstime);
int pthread_mutex_unlock (pthread_mutex_t *mutex);

int pthread_cond_wait (pthread_cond_t *cond,
 pthread_mutex_t *mutex);
int pthread_cond_timedwait (pthread_cond_t *cond,
 pthread_mutex_t *mutex,
 const struct timespec *abstime);

int pthread_cond_signal (pthread_cond_t *cond);
int pthread_cond_broadcast (pthread_cond_t *cond);

can be called any time, anywhere
(multiple lock reaction can be specified)

© 2006 Uwe R. Zimmer, The Australian National University Page 167 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Monitors in ‘C’ / POSIX
(example, definitions)

#define BUFF_SIZE 10

typedef struct {
 pthread_mutex_t mutex;
 pthread_cond_t buffer_not_full;
 pthread_cond_t buffer_not_empty;
 int count, first, last;
 int buf[BUFF_SIZE];
} buffer;

© 2006 Uwe R. Zimmer, The Australian National University Page 168 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Monitors in ‘C’ / POSIX
(example, operations)

int append (int item, buffer *B) {

 PTHREAD_MUTEX_LOCK (&B->mutex);
 while (B->count == BUFF_SIZE) {
 PTHREAD_COND_WAIT (
 &B->buffer_not_full,
 &B->mutex);
 }
 PTHREAD_MUTEX_UNLOCK (&B->mutex);
 PTHREAD_COND_SIGNAL (
 &B->buffer_not_empty);
 return 0;
}

int take (int *item, buffer *B) {

 PTHREAD_MUTEX_LOCK (&B->mutex);
 while (B->count == 0) {
 PTHREAD_COND_WAIT (
 &B->buffer_not_empty,
 &B->mutex);
 }
 PTHREAD_MUTEX_UNLOCK (&B->mutex);
 PTHREAD_COND_SIGNAL (
 &B->buffer_not_full);
 return 0;
}

© 2006 Uwe R. Zimmer, The Australian National University Page 169 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Monitors in Java
Java provides two mechanisms to construct monitors:

• Synchronized methods and code blocks
all methods and code blocks which are using the synchronized tag
are mutually exclusive with respect to the addressed class.

• Notification methods: wait, notify, and notifyAll
can be used only in synchronized regions and are waking any or all threads,
which are waiting in the same synchronized object.

© 2006 Uwe R. Zimmer, The Australian National University Page 170 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Monitors in Java
Considerations:

1. Synchronized methods and code blocks:
• In order to implement a monitor all methods in an object need to be synchronized.

☞ any other standard method can break the monitor and enter at any time.

• Methods outside the monitor-object can synchronize at this object.

☞ it is impossible to analyse a monitor locally, since lock accesses can exist all over the system.

• Static data is shared between all objects of a class.

☞ access to static data need to be synchronized with all objects of a class.

Either in static synchronized blocks: synchronized (this.getClass()) {…}
or in static methods: public synchronized static <method> {…}

© 2006 Uwe R. Zimmer, The Australian National University Page 171 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Monitors in Java
Considerations:

2. Notification methods: wait, notify, and notifyAll

• wait suspends the thread and releases the local lock only

☞ nested wait-calls will keep all enclosing locks.

• notify and notifyAll do not release the lock.

☞ methods, which are activated via notification need to wait for lock-access.

• Java does not require any specific release order (like a queue) for wait-suspended threads

☞ livelocks are not prevented at this level (in opposition to RT-Java).

• There are no explicit conditional variables.

☞ notified threads need to wait for the lock to be released and to re-evaluate its entry condition

© 2006 Uwe R. Zimmer, The Australian National University Page 172 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Monitors in Java
(multiple-readers-one-writer-example)

each of the readers uses these monitor.calls:

startRead ();
 // read the shared data only
stopRead ();

each of the writers uses these monitor.calls:

startWrite ();
 // manipulate the shared data
stopWrite ();

☞ construct a monitor, which allows
multiple readers

or
one writer

at a time inside the critical regions

© 2006 Uwe R. Zimmer, The Australian National University Page 173 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Monitors in Java
(multiple-readers-one-writer-example: wait-notifyAll method)

public class ReadersWriters

{

 private int readers = 0;
 private int waitingWriters = 0;
 private boolean writing = false;

…

© 2006 Uwe R. Zimmer, The Australian National University Page 174 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Monitors in Java
(multiple-readers-one-writer-example: wait-notifyAll method)

… public synchronized void StartWrite () throws InterruptedException
 {
 while (readers > 0 || writing)
 {
 waitingWriters++;
 wait();
 waitingWriters--;
 }
 writing = true;
 }

 public synchronized void StopWrite()
 {
 writing = false;
 notifyAll ();
 } …

© 2006 Uwe R. Zimmer, The Australian National University Page 175 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Monitors in Java
(multiple-readers-one-writer-example: wait-notifyAll method)

… public synchronized void StartRead () throws InterruptedException
 {
 while (writing || waitingWriters > 0)
 {
 wait();
 }
 readers++;
 }

 public synchronized void StopRead()
 {
 readers--;
 if (readers == 0) notifyAll();
 }
}

whenever a synchronized region is left:

• all threads are notified

• all threads are
re-evaluating their guards

© 2006 Uwe R. Zimmer, The Australian National University Page 176 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Monitors in Java
Standard monitor solution:

• declare the monitored data-structures private to the monitor object (non-static).

• introduce a class ConditionVariable:

 public class ConditionVariable {
 public boolean wantToSleep = false;
 }

• introduce synchronization-scopes in monitor-methods:
☞ synchronize on the adequate conditional variables first and
☞ synchronize on the monitor-object second.

• make sure that all methods in the monitor are implementing the correct synchronizations.

• make sure that no other method in the whole system is synchronizing on this monitor-object.

© 2006 Uwe R. Zimmer, The Australian National University Page 177 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Monitors in Java
(multiple-readers-one-writer-example: usage of external conditional variables)

public class ReadersWriters
{

 private int readers = 0;
 private int waitingReaders = 0;
 private int waitingWriters = 0;
 private boolean writing = false;

 ConditionVariable OkToRead = new ConditionVariable ();
 ConditionVariable OkToWrite = new ConditionVariable ();

…

© 2006 Uwe R. Zimmer, The Australian National University Page 178 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Monitors in Java
… public void StartWrite () throws InterruptedException
 {
 synchronized (OkToWrite)
 {
 synchronized (this)
 {
 if (writing | readers > 0) {
 waitingWriters++;
 OkToWrite.wantToSleep = true;
 } else {
 writing = true;
 OkToWrite.wantToSleep = false;
 }
 }
 if (OkToWrite.wantToSleep) OkToWrite.wait ();
 } } …

© 2006 Uwe R. Zimmer, The Australian National University Page 179 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Monitors in Java
… public void StopWrite ()
 {
 synchronized (OkToRead)
 {
 synchronized (OkToWrite)
 {
 synchronized (this)
 {
 if (waitingWriters > 0) {
 waitingWriters--;
 OkToWrite.notify (); // wakeup one writer
 } else {
 writing = false;
 OkToRead.notifyAll (); // wakeup all readers
 readers = waitingReaders;
 waitingReaders = 0;
 }
 } } } } …

© 2006 Uwe R. Zimmer, The Australian National University Page 180 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Monitors in Java
… public void StartRead () throws InterruptedException
 {
 synchronized (OkToRead)
 {
 synchronized (this)
 {
 if (writing | waitingWriters > 0) {
 waitingReaders++;
 OkToRead.wantToSleep = true;
 } else {
 readers++;
 OkToRead.wantToSleep = false;
 }
 }
 if (OkToRead.wantToSleep) OkToRead.wait ();
 } } …

© 2006 Uwe R. Zimmer, The Australian National University Page 181 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Monitors in Java
… public void StopRead ()
 {
 synchronized (OkToWrite)
 {
 synchronized (this)
 {
 readers--;
 if (readers == 0 & waitingWriters > 0) {
 waitingWriters--;
 OkToWrite.notify ();
 }
 }
 }
 }
}

© 2006 Uwe R. Zimmer, The Australian National University Page 182 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Object-orientation and synchronization

Since mutual exclusion, notification, and condition synchronization schemes need to be designed
and analysed considering the implementation of all involved methods and guards:

☞ new methods cannot be added without re-evaluating the whole class!

In opposition to the general re-usage idea of object-oriented programming,
the re-usage of synchronized classes (e.g. monitors) need to be considered carefully.

☞ The parent class might need to be adapted in order to suit the global synchronization scheme.

☞ Inheritance anomaly (Matsuoka & Yonezawa ‘93)

Methods to design and analyse expandible synchronized systems exist,
but are fairly complex and are not provided in any current object-oriented language.

© 2006 Uwe R. Zimmer, The Australian National University Page 183 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Monitors in POSIX & Real-time Java

☞ flexible and universal,
but relies on conventions rather than compilers

POSIX offers conditional variables

Real-time Java is more supportive than POSIX
in terms of data-encapsulation

Extreme care must be taken when employing
object-oriented programming and monitors

© 2006 Uwe R. Zimmer, The Australian National University Page 184 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Nested monitor calls
Assuming a thread in a monitor is calling an operation in another monitor
and is suspended at a conditional variable there:

☞ the called monitor is aware of the suspension and allows other threads to enter.

☞ the calling monitor is possibly not aware of the suspension and keeps its lock!

☞ the unjustified locked calling monitor
reduces the system performance and leads to potential deadlocks.

Suggestions to solve this situation:

• Maintain the lock anyway: e.g. POSIX, Java

• Prohibit nested procedure calls: e.g. Modula-1

• Provide constructs which specify the release of a monitor lock for remote calls, e.g. Ada95

© 2006 Uwe R. Zimmer, The Australian National University Page 185 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Criticism of monitors

• Mutual exclusion is solved elegantly and safely.

• Conditional synchronization is on the level of semaphores still
☞ all criticism on semaphores apply

☞ mixture of low-level and high-level synchronization constructs.

© 2006 Uwe R. Zimmer, The Australian National University Page 186 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Synchronization by protected objects
Combine

• the encapsulation feature of monitors

with

• the coordinated entries of conditional critical regions

to

☞ Protected objects

• all controlled data and operations are encapsulated
• all operations are mutual exclusive
• entry guards are attached to operations
• the protected interface allows for operations on data
• no protected data is accessible (other than by defined operations)
• tasks are queued (according to their priorities)

© 2006 Uwe R. Zimmer, The Australian National University Page 187 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Synchronization by protected objects in Ada95
(simultaneous read-access)

Some read-only operations do not need to be mutual exclusive:

protected type Shared_Data (Initial : Data_Item) is

 function Read return Data_Item;
 procedure Write (New_Value : in Data_Item);

private
 The_Data : Data_Item := Initial;
end Shared_Data_Item;

• protected functions can have ‘in’ parameters only and are not allowed to alter the private data
(enforced by the compiler).

☞ protected functions allow simultaneous access (but mutual exclusive with other operations).

• there is no defined priority between functions and other protected operations in Ada95.

© 2006 Uwe R. Zimmer, The Australian National University Page 188 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Synchronization by protected objects in Ada95
Condition synchronization is realized in the form of protected procedures
combined with boolean conditional variables (barriers): ☞ entries in Ada95:

Buffer_Size : constant Integer := 10;

type Index is mod Buffer_Size;
subtype Count is Natural range 0 .. Buffer_Size;
type Buffer_T is array (Index) of Data_Item;

protected type Bounded_Buffer is

 entry Get (Item : out Data_Item);
 entry Put (Item : in Data_Item);
private
 First : Index := Index'First;
 Last : Index := Index'Last;
 Num : Count := 0;
 Buffer : Buffer_T;

end Bounded_Buffer;

© 2006 Uwe R. Zimmer, The Australian National University Page 189 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Synchronization by protected objects in Ada95
(barriers)

protected body Bounded_Buffer is

 entry Get (Item : out Data_Item) when Num > 0 is
 begin
 Item := Buffer (First);
 First := First + 1;
 Num := Num - 1;
 end Get;

 entry Put (Item : in Data_Item) when Num < Buffer_Size is
 begin
 Last := Last + 1;
 Buffer (Last) := Item;
 Num := Num + 1;
 end Put;

end Bounded_Buffer;

© 2006 Uwe R. Zimmer, The Australian National University Page 190 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Synchronization by protected objects in Ada95
Protected entries are used like task entries:

Buffer : Bounded_Buffer;

select
 Buffer.Put (Some_Data);
or
 delay 10.0;
 -- do something after 10 s.
end select;

select
 Buffer.Get (Some_Data);
else
 -- do something else
end select;

select
 delay 10.0;
then abort
 Buffer.Put (Some_Data);
 -- try to enter for 10 s.
end select;

select
 Buffer.Get (Some_Data);
then abort
 -- meanwhile try something else
end select;

© 2006 Uwe R. Zimmer, The Australian National University Page 191 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Synchronization by protected objects in Ada95
(barrier evaluation)

Barrier evaluations and task activations:

• on calling a protected entry, the associated barrier is evaluated
(only those parts of the barrier which might have changed since the last evaluation).

• on leaving a protected procedure or entry, related barriers with tasks queued are evaluated
(only those parts of the barriers which might have been altered by this procedure / entry
or which might have changed since the last evaluation).

Barriers are not evaluated while inside a protected object or on leaving a protected function.

© 2006 Uwe R. Zimmer, The Australian National University Page 192 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Synchronization by protected objects in Ada95
(operations on entry queues)

The count attribute indicates the number of tasks waiting at a specific queue:

protected Blocker is

 entry Proceed;

private
 Release : Boolean := False;
end Blocker;

protected body Blocker is

 entry Proceed
 when Proceed’count = 5
 or Release is
 begin
 Release := Proceed’count > 0;
 end Proceed;

end Blocker;

© 2006 Uwe R. Zimmer, The Australian National University Page 193 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Synchronization by protected objects in Ada95
(operations on entry queues)

The count attribute indicates the number of tasks waiting at a specific queue:

protected type Broadcast is

 entry Receive (M: out Message);
 procedure Send (M: in Message);

private

 New_Message : Message;
 Arrived : Boolean := False;

end Broadcast;

protected body Broadcast is

 entry Receive (M: out Message)
 when Arrived is
 begin
 M := New_Message
 Arrived := Receive’count > 0;
 end Proceed;

 procedure Send (M: in Message) is
 begin
 New_Message := M;
 Arrived := Receive’count > 0;
 end Send;

end Broadcast;

© 2006 Uwe R. Zimmer, The Australian National University Page 194 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Synchronization by protected objects in Ada95
(entry families, requeue & private entries)

Further refinements on task control by:

• Entry families:
a protected entry declaration can contain a discrete subtype selector, which can be evaluated
by the barrier (other parameters cannot be evaluated by barriers) and implements an
array of protected entries.

• Requeue facility:
protected operations can use ‘requeue’ to redirect tasks to other internal, external, or private
entries. The current protected operation is finished and the lock on the object is released.

‘Internal progress first’-rule: internally requeued tasks are placed at the head of the waiting queue!

• Private entries:
protected entries which are not accessible from outside the protected object,
but can be employed as destinations for requeue operations.

© 2006 Uwe R. Zimmer, The Australian National University Page 195 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Synchronization by protected objects in Ada95
(entry families)

package Modes is

 type Mode_T is
 (Takeoff, Ascent, Cruising,
 Descent, Landing);

 protected Mode_Gate is

 procedure Set_Mode
 (Mode: in Mode_T);
 entry Wait_For_Mode
 (Mode_T);

 private
 Current_Mode : Mode_Type
 := Takeoff;
 end Mode_Gate;
end Modes;

package body Modes is
 protected body Mode_Gate is

 procedure Set_Mode
 (Mode: in Mode_T) is

 begin
 Current_Mode := Mode;
 end Set_Mode;

 entry Wait_For_Mode
 (for Mode in Mode_T)
 when Current_Mode = Mode is

 begin null;
 end Wait_For_Mode;

 end Mode_Gate;
end Modes;

© 2006 Uwe R. Zimmer, The Australian National University Page 196 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Synchronization by protected objects in Ada95
(requeue & private entries)

How to implement a queue, at which every task
can be released only once per triggering event?

☞ e.g. by employing two entries:

package Single_Release is

 entry Wait;
 procedure Trigger;

private
 Front_Door,
 Main_Door : Boolean := False;

 entry Queue;

end Single_Release;

© 2006 Uwe R. Zimmer, The Australian National University Page 197 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Synchronization by protected objects in Ada95
(requeue & private entries)

package body Single_Release is

 entry Wait
 when Front_Door is

 begin
 if Wait'Count = 0 then
 Front_Door := False;
 Main_Door := True;
 end if;

 requeue Queue;

 end Wait;

 entry Queue
 when Main_Door is

 begin
 if Queue’count = 0 then
 Main_Door := False;
 end if;;
 end Queue;

 procedure Trigger is
 begin
 Front_Door := True;
 end Trigger;

end Single_Release;opening the main door
before requeuing?

© 2006 Uwe R. Zimmer, The Australian National University Page 198 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Synchronization by protected objects in Ada95
(restrictions applying to protected operations)

Code inside a protected procedure, function or entry is bound to non-blocking operations
(which would keep the whole protected object locked).

Thus the following operations are prohibited:

• entry call statements

• delay statements

• task creations or activations

• calls to sub-programs which contains a potentially blocking operation

• select statements

• accept statements

☞ The requeue facility allows for a potentially blocking operation,
but releases the current lock!

© 2006 Uwe R. Zimmer, The Australian National University Page 199 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Summary

Shared memory based
synchronization

General

Criteria:

• level of abstraction

• centralized vs. distributed concepts

• support for consistency
and correctness validations

• error sensitivity

• predictability

• efficiency

Semaphores
(atomic P, V ops)

Flags
(atomic word access)

Synchronized
methods

(mutual exclusion)
Conditional

variables

Conditional critical
regions

Monitors

Data structure
encapsulation

Protected objects

Guards (barriers)

© 2006 Uwe R. Zimmer, The Australian National University Page 200 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Summary

Shared memory based
synchronization

POSIX

• all low level constructs available.

• no connection with the
actual data-structures.

• error-prone.

• non-determinism introduced by
‘release some’ semantics of
conditional variables (cond_signal). Semaphores

(atomic P, V ops)

Flags
(atomic word access)

Synchronized
methods

(mutual exclusion)
Conditional

variables

Conditional critical
regions

Monitors

Data structure
encapsulation

Protected objects

Guards (barriers)

© 2006 Uwe R. Zimmer, The Australian National University Page 201 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Summary

Shared memory based
synchronization

Java

• mutual exclusion
(synchronized methods)
as the only support.

• general notification feature
(no conditional variables)

• non-restricted object oriented extension
introduces hard to predict timing
behaviours.

Semaphores
(atomic P, V ops)

Flags
(atomic word access)

Synchronized
methods

(mutual exclusion)
Conditional

variables

Conditional critical
regions

Monitors

Data structure
encapsulation

Protected objects

Guards (barriers)

© 2006 Uwe R. Zimmer, The Australian National University Page 202 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Summary

Shared memory based
synchronization

Modula-1, CHILL

• full monitor implementation
(Dijkstra-Hoare monitor concept).

… no more, no less, …

☞ all features of and criticism
about monitors apply.

Semaphores
(atomic P, V ops)

Flags
(atomic word access)

Synchronized
methods

(mutual exclusion)
Conditional

variables

Conditional critical
regions

Monitors

Data structure
encapsulation

Protected objects

Guards (barriers)

© 2006 Uwe R. Zimmer, The Australian National University Page 203 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Summary

Shared memory based
synchronization

Ada95

• complete synchronization support

• low-level semaphores
for very special cases.

• predictable timing (☞ scheduler).

☞ most memory oriented synchronization
conditions are realized by the compiler
or the run-time environment directly
rather then the programmer.

(Ada95 is currently without any mainstream
competitor in this field)

Semaphores
(atomic P, V ops)

Flags
(atomic word access)

Synchronized
methods

(mutual exclusion)
Conditional

variables

Conditional critical
regions

Monitors

Data structure
encapsulation

Protected objects

Guards (barriers)

© 2006 Uwe R. Zimmer, The Australian National University Page 204 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Message-based synchronization
• Synchronization model

• Asynchronous
• Synchronous
• Remote invocation

• Addressing (name space)

• direct communication
• mail-box communication

• Message structure

• arbitrary
• restricted to ‘basic’ types
• restricted to un-typed communications

© 2006 Uwe R. Zimmer, The Australian National University Page 205 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Message-based synchronization
Asynchronous messages

If there is a listener:

☞ send the message directly

async. send async. receiveasync. send async. receive

timetime

P2P1

© 2006 Uwe R. Zimmer, The Australian National University Page 206 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Message-based synchronization
Asynchronous messages

If the receiver becomes available at a later stage:

☞ the message needs to be buffered

async. send

async. receive

async. send

async. receive

timetime

P2P1

© 2006 Uwe R. Zimmer, The Australian National University Page 207 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Message-based synchronization
Synchronous messages

Delay the receiver:

• until the message becomes available

sync. send sync. receive

timetime

P2P1

© 2006 Uwe R. Zimmer, The Australian National University Page 208 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Message-based synchronization
Synchronous messages

Delay the receiver:

• until the message becomes available

Simulated by asynchronous messages:

☞ two asynchronous messages required

async. send async. receive

async. sendasync. receive

async. send async. receive

async. sendasync. receive

timetime

P2P1

© 2006 Uwe R. Zimmer, The Australian National University Page 209 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Message-based synchronization
Synchronous messages

Delay the sender until:

• a receiver is available

• a receiver got the message

sync. send

sync. receive

timetime

P2P1

© 2006 Uwe R. Zimmer, The Australian National University Page 210 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Message-based synchronization
Synchronous messages

Delay the sender until:

• a receiver is available

• a receiver got the message

Simulated by asynchronous messages:
If the receiver becomes available at a later stage:

☞ message needs to be buffered

async. send async. receive

async. sendasync. receive

async. send

async. receive

async. sendasync. receive

timetime

P2P1

© 2006 Uwe R. Zimmer, The Australian National University Page 211 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Message-based synchronization
Remote invocation

Delay the receiver, until:

• an invocation is available

• a receiver executed an addressed routine

rem. invoc. invocation

timetime

P2P1

© 2006 Uwe R. Zimmer, The Australian National University Page 212 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Message-based synchronization
Remote invocation

Delay the receiver, until:

• an invocation is available

• a receiver executed an addressed routine

Simulated by asynchronous messages:

☞ four messages are required

async. send async. receive

async. sendasync. receive

async. send async. receive

async. sendasync. receive

async. send async. receive

async. sendasync. receive

timetime

P2P1

© 2006 Uwe R. Zimmer, The Australian National University Page 213 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Message-based synchronization
Remote invocation

Delay the sender, until:

• a receiver becomes available

• a receiver got the message

• a receiver executed an addressed routine

rem. invoc.

invocation

timetime

P2P1

© 2006 Uwe R. Zimmer, The Australian National University Page 214 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Message-based synchronization
Remote invocation

Delay the sender, until:

• a receiver becomes available

• a receiver got the message

• a receiver executed an addressed routine

Simulated by asynchronous messages:

☞ four messages are required

☞ message buffering required

async. send async. receive

async. sendasync. receive

async. send async. receive

async. sendasync. receive

async. send

async. receive

async. sendasync. receive

timetime

P2P1

© 2006 Uwe R. Zimmer, The Australian National University Page 215 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Message-based synchronization
Asynchronous remote invocation

Delay the sender, until:

• a receiver becomes available

• a receiver got the message

rem. invoc.

invocation

timetime

P2P1

© 2006 Uwe R. Zimmer, The Australian National University Page 216 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Message-based synchronization
Asynchronous remote invocation

Delay the sender, until:

• a receiver becomes available

• a receiver got the message

Simulated by asynchronous messages:

☞ two messages are required

async. send async. receive

async. sendasync. receive

async. send

async. receive

async. sendasync. receive

timetime

P2P1

© 2006 Uwe R. Zimmer, The Australian National University Page 217 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Synchronous vs. asynchronous communications
Purpose ‘synchronization’: ☞ synchronous messages / remote invocations
Purpose ‘in-time delivery’: ☞ asynchronous messages / asynchronous remote invocations

☞ ‘Real’ synchronous message passing in distributed systems requires hardware support.

☞ Asynchronous message passing requires the usage of (infinite?) buffers.

Can both communication modes emulate each other?
• Synchronous communications are emulated

by a combination of asynchronous messages in some systems.

• Asynchronous communications can be emulated in synchronized message passing systems by
introducing ‘buffer-tasks’ (de-coupling sender and receiver as well as allowing for broadcasts).

© 2006 Uwe R. Zimmer, The Australian National University Page 218 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Addressing (name space)
Direct vs. indirect:

send <message> to <process-name>
wait for <message> from <process-name>
send <message> to <mailbox>
wait for <message> from <mailbox>

Asymmetrical addressing:

send <message> to …
wait for <message>

☞ Client-server paradigm

© 2006 Uwe R. Zimmer, The Australian National University Page 219 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Addressing (name space)

Communication medium:

Connections Functionality

one-to-one buffer, queue, synchronization

one-to-many multicast

one-to-all broadcast

many-to-one local server, synchronization

all-to-one general server, synchronization

many-to-many general network- or bus-system

© 2006 Uwe R. Zimmer, The Australian National University Page 220 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Message structure
• Machine dependent representations need to be taken care of in a distributed environment.

• Communication system is often outside the typed language environment.

Most communication systems are handling streams (packets) of a basic element type only.

☞ Conversion routines for data-structures other then the basic element type are supplied …

… manually (POSIX, ‘C/C++’, Java)
… semi-automatic (CORBA)
… automatic and are typed-persistent (Ada95, CHILL, Occam2)

© 2006 Uwe R. Zimmer, The Australian National University Page 221 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Message structure (Ada95)
package Ada.Streams is
 pragma Pure (Streams);

 type Root_Stream_Type is abstract tagged limited private;

 type Stream_Element is mod implementation-defined;

 type Stream_Element_Offset is range implementation-defined;

 subtype Stream_Element_Count is
 Stream_Element_Offset range 0..Stream_Element_Offset'Last;

 type Stream_Element_Array is
 array (Stream_Element_Offset range <>) of Stream_Element;

 procedure Read (…) is abstract;
 procedure Write (…) is abstract;

private
 … -- not specified by the language
end Ada.Streams;

© 2006 Uwe R. Zimmer, The Australian National University Page 222 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Message structure (Ada95)
Reading and writing values of any type to a stream:

procedure S'Write(
 Stream : access Ada.Streams.Root_Stream_Type'Class; Item : in T);
procedure S'Class'Write(
 Stream : access Ada.Streams.Root_Stream_Type'Class; Item : in T'Class);

procedure S'Read(
 Stream : access Ada.Streams.Root_Stream_Type'Class; Item : out T);
procedure S'Class'Read(
 Stream : access Ada.Streams.Root_Stream_Type'Class; Item : out T'Class)

Reading and writing values, bounds and discriminants of any type to a stream:

procedure S'Output(
 Stream : access Ada.Streams.Root_Stream_Type'Class; Item : in T);

function S'Input(
 Stream : access Ada.Streams.Root_Stream_Type'Class) return T;

© 2006 Uwe R. Zimmer, The Australian National University Page 223 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Message-based synchronization
Practical message-passing systems:

POSIX:
“message queues”:
☞ ordered indirect [asymmetrical | symmetrical] asynchronous
byte-level many-to-many message passing

CHILL:
“buffers”, ”signals”:
☞ ordered indirect [asymmetrical | symmetrical] [synchronous | asynchronous]
typed [many-to-many | many-to-one] message passing

Occam2:
“channels”:
☞ indirect symmetrical synchronous fully-typed one-to-one message passing

Ada95:
“(extended) rendezvous”:
☞ ordered direct asymmetrical [synchronous | asynchronous]
fully-typed many-to-one remote invocation

Java: no communication via messages available

© 2006 Uwe R. Zimmer, The Australian National University Page 224 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Message-based synchronization
Practical message-passing systems:

o
rd

er
ed

sy
m

m
et

ri
ca

l

as
ym

m
et

ri
ca

l

sy
n

ch
ro

n
o

u
s

as
yn

ch
ro

n
o

u
s

d
ir

ec
t

in
d

ir
ec

t
contents o

n
e-

to
-o

n
e

m
an

y-
to

-o
n

e

m
an

y-
to

-m
an

y

method

POSIX: * * * * * bytes * message passing

CHILL: * * * * * * typed * * message passing

Occam2: * * * fully typed * message passing

Ada95: * * * * * fully typed * remote invocation

Java: no communication via messages available

© 2006 Uwe R. Zimmer, The Australian National University Page 225 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Message-based synchronization
Practical message-passing systems for strict synchronisation purposes:

o
rd

er
ed

sy
m

m
et

ri
ca

l

as
ym

m
et

ri
ca

l

sy
n

ch
ro

n
o

u
s

as
yn

ch
ro

n
o

u
s

d
ir

ec
t

in
d

ir
ec

t
contents o

n
e-

to
-o

n
e

m
an

y-
to

-o
n

e

m
an

y-
to

-m
an

y

method

POSIX: * * * * * bytes * message passing

CHILL: * * * * * * typed * * message passing

Occam2: * * * fully typed * message passing

Ada95: * * * * * fully typed * remote invocation

Java: no communication via messages available

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Message-based synchronization in Occam2
Communication is ensured by means of a ‘channel’, which:

• can be used by one writer and one reader process only

• and is synchronous:

CHAN OF INT SensorChannel:

PAR
 INT reading:
 SEQ i = 0 FOR 1000
 SEQ
 -- generate reading
 SensorChannel ! reading

 INT data:
 SEQ i = 0 FOR 1000
 SEQ
 SensorChannel ? data
 -- employ data

 tasks are synchronized
at these points

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Message-based synchronization in CHILL
CHILL is the ‘CCITT High Level Language’,
where CCITT is the Comité Consultatif International Télégraphique et Téléphonique.
The CHILL language development was started in 1973 and standardized in 1979.

☞ strong support for concurrency, synchronization, and communication
(monitors, buffered message passing, synchronous channels)

dcl SensorBuffer buffer (32) int;
…
send SensorBuffer (reading); | receive case
 | (SensorBuffer in data) : …
 | esac;

signal SensorChannel = (int) to consumertype;
…
send SensorChannel (reading) | receive case
 to consumer | (SensorChannel in data): …
 | esac;

asynchronous

synchronous

© 2006 Uwe R. Zimmer, The Australian National University Page 228 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Message-based synchronization in Ada95
Ada95 supports remote invocations ((extended) rendezvous) in form of:

• entry points in tasks

• full set of parameter profiles supported

If the local and the remote task are on different architectures,
or if an intermediate communication system is employed:

☞ parameters incl. bounds and discriminants are ‘tunnelled’ through byte-stream-formats.

Synchronization:

• both tasks are synchronized at the beginning of the remote invocation (☞ ‘rendezvous’)

• the calling task if blocked until the remote routine is completed (☞ ‘extended rendezvous’)

© 2006 Uwe R. Zimmer, The Australian National University Page 229 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Message-based synchronization in Ada95
Remote invocation

(Rendezvous)

Delay the sender, until:

• a receiver becomes available

• a receiver got the message

• a receiver started an addressed routine

rem. invoc.

invocation

timetime

P2P1

synchronized

© 2006 Uwe R. Zimmer, The Australian National University Page 230 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Message-based synchronization in Ada95
Remote invocation

(Extended rendezvous)

Delay the sender, until:

• a receiver becomes available

• a receiver got the message

• a receiver executed an addressed routine

• a receiver passed the results

rem. invoc.

invocation

timetime

P2P1

send results

get results

synchronized

released

© 2006 Uwe R. Zimmer, The Australian National University Page 231 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Message-based synchronization in Ada95
(Rendezvous)

…
<entry_name> [(index)] <parameters>
… -- waiting for synchronization
… --
… --
… --
…
…
…
…
…

…
…
…
…
…
accept <entry_name> [(index)]
 <parameter_profile>;
…
…
…
…
…

synchronized

© 2006 Uwe R. Zimmer, The Australian National University Page 232 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Message-based synchronization in Ada95
(Rendezvous)

…
…
…
…
…
<entry_name> [(index)] <parameters>
…
…
…
…

…
accept <entry_name> [(index)]
 <parameter_profile>;
… -- waiting for synchronization
… --
… --
…
…
…
…

synchronized

© 2006 Uwe R. Zimmer, The Australian National University Page 233 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Message-based synchronization in Ada95
(Extended rendezvous)

…
<entry_name> [(index)] <parameters>
… -- waiting for synchronization
… --
… --
… --
 … --
 … -- blocked
 … --
 … --
…

…
…
…
…
…
accept <entry_name> [(index)]
 <parameter_profile> do
 … --
 … -- remote invocation
 … --
end <entry_name>;
…

synchronizedsynchronized

synchronizedreturn results

© 2006 Uwe R. Zimmer, The Australian National University Page 234 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Message-based synchronization in Ada95
(Extended rendezvous)

…
…
…
…
…
<entry_name> [(index)] <parameters>
 … --
 … -- blocked
 … --
 … --
…

…
accept <entry_name> [(index)]
 <parameter_profile> do
… -- waiting for synchronization
… --
… --
 … --
 … --
 … -- remote invocation
 … --
end <entry_name>;
…

synchronizedsynchronized

synchronizedreturn results

© 2006 Uwe R. Zimmer, The Australian National University Page 235 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Synchronization

Message-based synchronization in Ada95
Some things to consider for task-entries:

• In contrast to protected-object-entries, task-entries can call other blocking operations.

• Accept statements can be nested (but need to be different).

☞ helpful e.g. to synchronize more than two tasks.

• Accept statements can have a dedicated exception handler (like any other code-block).

Exceptions, which are not handled during the rendezvous phase
are propagated to all involved tasks.

• Parameters cannot be direct ‘access’ parameters, but can be access-types.

• ‘count on task-entries is defined, but is only accessible from inside the tasks owning the entry.

• Entry families (arrays of entries) are supported.

• Private entries (accessible for internal tasks) are supported.

© 2006 Uwe R. Zimmer, The Australian National University Page 236 of 516 (Chapter 4: to 236)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Summary

Synchronization

• Shared memory based synchronization

• Flags, condition variables, semaphores, …
… conditional critical regions, monitors, protected objects.

• Guard evaluation times, nested monitor calls, deadlocks, …
… simultaneous reading, queue management.

• Synchronization and object orientation, blocking operations and re-queuing.

• Message based synchronization

• Synchronization models
• Addressing modes
• Message structures
• Examples

5
Non-Determinism

Uwe R. Zimmer
The Australian National University

© 2006 Uwe R. Zimmer, The Australian National University Page 238 of 516 (Chapter 5: to 259)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

References for this chapter

[Ben-Ari90]
M. Ben-Ari
Principles of Concurrent
and Distributed Programming
1990
Prentice-Hall,
ISBN 0-13-711821-X

[Bacon98]
J. Bacon
Concurrent Systems
1998 (2nd Edition)
Addison Wesley Longman Ltd,
ISBN 0-201-17767-6

[Ada95RM] (link to on-line version)
Ada Working Group
ISO/IEC JTC1/SC 22/WG 9
Ada 95 Reference Manual
– Language and Standard Libraries
ISO/IEC 8652:1995(E) with COR.1:2000,
June 2001

[Cohen96]
Norman H. Cohen
Ada as a second language
McGraw-Hill series in computer science, 2nd
edition

all references and links are available on the course page

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Non-Determinism

Selective waiting
Dijkstra’s guarded commands:

if x <= y -> m := x
❏ x >= y -> m := y
fi

☞ the programmer needs to design the alternatives as ‘parallel’ options:
all cases need to be covered and overlapping conditions need to lead to the same result

Extremely different philosophy: ‘C’-switch:

switch (x) {
 case 1: r := 3;
 case 2: r := 2; break;
 case 3: r := 1;
}

☞ the sequence of alternatives has a crucial role.

selection is
non-deterministic!

© 2006 Uwe R. Zimmer, The Australian National University Page 240 of 516 (Chapter 5: to 259)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Non-Determinism

Selective waiting in Occam2
ALT
 Guard1
 Process1
 Guard2
 Process2
…

• Guards are referring to boolean expressions and/or channel input operations.

• The boolean expressions are local expressions, i.e. if none of them evaluates to true
at the time of the evaluation of the ALT-statement, then the process is stopped.

• If all triggered channel input operations evaluate to false,
the process is suspended until further activity on one of the named channels.

• Any Occam2 process can be employed in the ALT-statement

• The ALT-statement is non-deterministic (there is also a deterministic version: PRI ALT).

© 2006 Uwe R. Zimmer, The Australian National University Page 241 of 516 (Chapter 5: to 259)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Non-Determinism

Selective waiting in Occam2
ALT
 NumberInBuffer < Size & Append ? Buffer [Top]
 SEQ
 NumberInBuffer := NumberInBuffer + 1
 Top := (Top + 1) REM Size
 NumberInBuffer > 0 & Request ? ANY
 SEQ
 Take ! Buffer [Base]
 NumberInBuffer := NumberInBuffer - 1
 Base := (Base + 1) REM Size

• synchronization on input-channels only:

☞ to initiate the sending of data (Take ! Buffer [Base]),
a request need to be made first (Request ? ANY)

CSP (Hoare) also supports non-deterministic selective waiting

© 2006 Uwe R. Zimmer, The Australian National University Page 242 of 516 (Chapter 5: to 259)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Selective Synchronization

Message-based selective synchronization in Ada95
Forms of selective waiting:

select_statement ::= selective_accept |
 conditional_entry_call |
 timed_entry_call |
 asynchronous_select

… underlying concept: Dijkstra’s guarded commands

selective_accept implements …

• … wait for more than a single rendezvous at any one time

• … time-out if no rendezvous is forthcoming within a specified time

• … withdraw its offer to communicate if no rendezvous is available immediately

• … terminate if no clients can possibly call its entries

© 2006 Uwe R. Zimmer, The Australian National University Page 243 of 516 (Chapter 5: to 259)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Selective Synchronization

Message-based selective synchronization in Ada95
selective_accept in its full syntactical form in Ada95:

selective_accept ::= select
 [guard] selective_accept_alternative
 { or [guard] selective_accept_alternative
 [else sequence_of_statements]
 end select;

guard ::= when <condition> =>

selective_accept_alternative ::= accept_alternative |
 delay_alternative |
 terminate_alternative

accept_alternative ::= accept_statement [sequence_of_statements]
delay_alternative ::= delay_statement [sequence_of_statements]
terminate_alternative ::= terminate;

© 2006 Uwe R. Zimmer, The Australian National University Page 244 of 516 (Chapter 5: to 259)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Selective Synchronization

Basic forms of selective synchronization
(select-or)

select
 accept … do …
 end …
or
 accept … do …
 end …
or
 accept … do …
 end …
or
 accept … do …
 end …
…
end select;

• If none of the named entries have been
called, the task is suspended until one of the
entries is addressed by another task.

• The selection of an accept is non-determinis-
tic, in case that multiple entries are called.

☞ The selection can be controlled by means of
the real-time systems annex.

• The select statement is completed, when at
least one of the entries has been called and
those accept-block has been executed.

© 2006 Uwe R. Zimmer, The Australian National University Page 245 of 516 (Chapter 5: to 259)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Selective Synchronization

Basic forms of selective synchronization
(guarded select-or)

select
 when <condition> =>
 accept … do …
 end …
or
 when <condition> =>
 accept … do …
 end …
or
 when <condition> =>
 accept … do …
 end …
…
end select;

• Analogue to Dijkstra’s guarded commands

• all accepts closed will raise a Program_Error

☞ set of conditions need to be complete

© 2006 Uwe R. Zimmer, The Australian National University Page 246 of 516 (Chapter 5: to 259)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Selective Synchronization

Basic forms of selective synchronization
(guarded select-or-else)

select
 [when <condition> =>]
 accept … do …
 end …
or
 [when <condition> =>]
 accept … do …
 end …
or
 [when <condition> =>]
 accept … do …
 end …
else
 <statements>
…
end select;

• If none of the open entries can be accepted
immediately, the else alternative is selected.

• There can be only one else alternative and it
cannot be guarded.

© 2006 Uwe R. Zimmer, The Australian National University Page 247 of 516 (Chapter 5: to 259)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Selective Synchronization

Basic forms of selective synchronization
(guarded select-or-delay)

select
 [when <condition> =>]
 accept … do …
 end …
or
 [when <condition> =>]
 delay …
 <statements>
or
 [when <condition> =>]
 delay …
 <statements>
…
end select;

• If none of the open entries has been called
before the amount of time specified in the
earliest open delay alternative, this delay al-
ternative is selected.

• There can be multiple delay alternatives if
more than one delay alternative expires si-
multaneously, either one may be chosen.

• delay and delay until can be employed.

© 2006 Uwe R. Zimmer, The Australian National University Page 248 of 516 (Chapter 5: to 259)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Selective Synchronization

Basic forms of selective synchronization
(guarded select-or-terminate)

select
 [when <condition> =>]
 accept … do …
 end …
or
 [when <condition> =>]
 accept … do …
 end …
or
 [when <condition> =>]
 terminate;
…
end select;

The terminate alternative is chosen if none of the
entries can ever be called again, i.e.:

• all tasks which can possibly call any of the
named entries are terminated.

or

• all remaining active tasks which can possibly
call any of the named entries are waiting on
selective terminate statements and none of
their open entries can be called any longer.

☞ This task and all its dependent waiting-for-
termination tasks are terminated together.

© 2006 Uwe R. Zimmer, The Australian National University Page 249 of 516 (Chapter 5: to 259)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Selective Synchronization

Basic forms of selective synchronization
(guarded select-or-else select-or-delay select-or-terminate)

select
 [when <condition> =>]
 accept … do …
 end …
or
 [when <condition> =>]
 accept … do …
 end …
else
 <statements>
…
end select;

select
 [when <condition> =>]
 accept … do …

 end …
or
 [when <condition> =>]
 delay …
 <statements>
…
end select;

select
 [when <condition> =>]
 accept … do …
 end …
or
 [when <condition> =>]
 terminate;
…
end select;

else - delay - terminate
alternatives

cannot be mixed!

© 2006 Uwe R. Zimmer, The Australian National University Page 250 of 516 (Chapter 5: to 259)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Selective Synchronization

Conditional & timed entry-calls
conditional_entry_call ::=
 select
 entry_call_statement
 [sequence_of_statements]
 else
 sequence_of_statements
 end select;

select
 Light_Monitor.Wait_for_Light;
 Lux := True;
else
 Lux := False;
end;

timed_entry_call ::=
 select
 entry_call_statement
 [sequence_of_statements]
 or
 delay_alternative
 end select;

select
 Controller.Request (Medium)
 (Some_Item);
 -- process data
or
 delay 45.0;
 -- try something else
end select;

© 2006 Uwe R. Zimmer, The Australian National University Page 251 of 516 (Chapter 5: to 259)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Selective Synchronization

Conditional & timed entry-calls
conditional_entry_call ::=
 select
 entry_call_statement
 [sequence_of_statements]
 else
 sequence_of_statements
 end select;

select
 Light_Monitor.Wait_for_Light;
 Lux := True;
else
 Lux := False;
end;

timed_entry_call ::=
 select
 entry_call_statement
 [sequence_of_statements]
 or
 delay_alternative
 end select;

select
 Controller.Request (Medium)
 (Some_Item);
 -- process data
or
 delay 45.0;
 -- try something else
end select;

There is only
one entry call

and either
one ‘else ‘

or
one ‘or delay’

© 2006 Uwe R. Zimmer, The Australian National University Page 252 of 516 (Chapter 5: to 259)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Selective Synchronization

Conditional & timed entry-calls
conditional_entry_call ::=
 select
 entry_call_statement
 [sequence_of_statements]
 else
 sequence_of_statements
 end select;

select
 Light_Monitor.Wait_for_Light;
 Lux := True;
else
 Lux := False;
end;

timed_entry_call ::=
 select
 entry_call_statement
 [sequence_of_statements]
 or
 delay_alternative
 end select;

select
 Controller.Request (Medium)
 (Some_Item);
 -- process data
or
 delay 45.0;
 -- try something else
end select;

The idea in both cases is to withdraw a synchronization request
and not to implement polling or busy-waiting.

© 2006 Uwe R. Zimmer, The Australian National University Page 253 of 516 (Chapter 5: to 259)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Selective Synchronization

Non-determinism in selective synchronizations
☞ If equal alternatives are given, then the program correctness (incl. the timing specifications)

must not be affected by the actual selection.

• If alternatives have different priorities,
this can be expressed e.g. by means of the Ada real-time annex.

• Non-determinism in concurrent systems is or can be also introduced by:

• non-ordered monitor or other queues
• buffering / routing message passing systems
• non-deterministic schedulers
• timer quantization
• clock drifts
• network congestions
• … any other form of asynchronism

© 2006 Uwe R. Zimmer, The Australian National University Page 254 of 516 (Chapter 5: to 259)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

remember our introduction: Models and Terminology

The concurrent programming abstraction

Correctness of concurrent non-real-time systems
[logical correctness]:

• does not depend on speeds / execution times / delays

• does not depend on actual interleaving of concurrent processes

☞ does depend on all possible sequences of interaction points

© 2006 Uwe R. Zimmer, The Australian National University Page 255 of 516 (Chapter 5: to 259)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

remember our introduction: Models and Terminology

The concurrent programming abstraction

Extended concepts of correctness in concurrent systems:

¬ Termination is often not intended or even considered a failure

• Safety properties:

where means that does always hold

• Liveness properties:

where means that does eventually hold (and will then stay true)
and is the current state of the concurrent system

P I() Processes I S,()∧() Q I S,()⇒
Q Q

P I() Processes I S,()∧() Q I S,()◊⇒
 Q◊ Q

S

© 2006 Uwe R. Zimmer, The Australian National University Page 256 of 516 (Chapter 5: to 259)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Models and Terminology

The concurrent programming abstraction

Correctness of concurrent non-real-time systems
[logical correctness]:

☞ does depend on all possible sequences of interaction points

☞ Isn’t there an actual unique sequence of interaction points,
… ☞ which is determined by the system and can be calculated?

in general: NO
- due to common intrinsically non-deterministic effects

© 2006 Uwe R. Zimmer, The Australian National University Page 257 of 516 (Chapter 5: to 259)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Non-Determinism

Selective waiting
Dijkstra’s guarded commands:

if x <= y -> m := x
❏ x >= y -> m := y
fi

☞ the programmer needs to design the alternatives as ‘parallel’ options:
all cases need to be covered and overlapping conditions need to lead to the same result

☞ Systems based on non-deterministic alternatives
extent canonically to concurrent systems

selection is
non-deterministic!

© 2006 Uwe R. Zimmer, The Australian National University Page 258 of 516 (Chapter 5: to 259)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Selective Synchronization

Basic forms of selective synchronization in Ada95
(guarded select-or)

select
 when <condition> =>
 accept … do …
 end …
or
 when <condition> =>
 accept … do …
 end …
or
 when <condition> =>
 accept … do …
 end …
…
end select;

Considering all alternatives
leads to many different interleavings!

How to keep it understandable / verifiable?

☞ avoid combinatorial explosions!

☞ reunite different paths as soon as possible

☞ specify unique system-wide
synchronization-(check)-points

© 2006 Uwe R. Zimmer, The Australian National University Page 259 of 516 (Chapter 5: to 259)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Summary

Non-Determinism

• Selective synchronization

• Selective accepts
• Selective calls
• Indeterminism in message based synchronization

• General Non-Determinism in Concurrent Systems

6
Scheduling
Uwe R. Zimmer

The Australian National University

© 2006 Uwe R. Zimmer, The Australian National University Page 261 of 516 (Chapter 6: to 306)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

References for this chapter

[Bacon98]
J. Bacon
Concurrent Systems
1998 (2nd Edition)
Addison Wesley Longman Ltd,
ISBN 0-201-17767-6

[Stallings2001] – Chapter 3,4
William Stallings
Operating Systems
Prentice Hall, 2001

all references and some links are available on the course page

© 2006 Uwe R. Zimmer, The Australian National University Page 262 of 516 (Chapter 6: to 306)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Scheduling

Purpose of scheduling
A scheduling scheme provides two features:

• Ordering the use of resources (e.g. CPUs, networks)
• Predicting the worst-case behaviour of the system

when the scheduling algorithm is applied
… in case that some or all information about the expected resource requests are known

A prediction can then be used

☞ at compile-run: to confirm the overall resource requirements of the application, or

☞ at run-time: to permit acceptance of additional usage/reservation requests.

© 2006 Uwe R. Zimmer, The Australian National University Page 263 of 516 (Chapter 6: to 306)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Scheduling

Criteria for scheduling methods
Performance criteria:

minimize the …
Predictability criteria:

minimize the diversion from given

 Process / user perspective:

Waiting time maximum / average / variance minimal and maximal waiting times

Response time maximum / average / variance minimal and maximal response times

Turnaround time maximum / average / variance deadlines

 System perspective:

Throughput
maximum / average / variance

of CPU time per process
—

Utilization CPU idle time —

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Scheduling

Time scales of scheduling

CPU
creation

batch ready

ready, suspended

blocked, suspended

blocked

pre-emption or cycle done

terminate.

block or synchronize

executingadmit

dispatch

suspend (swap-out)

swap-in

swap-out

unblock

suspend (swap-out)

Long-term

Short-term

Medium-term

© 2006 Uwe R. Zimmer, The Australian National University Page 265 of 516 (Chapter 6: to 306)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Scheduling

Example: Requested times

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

© 2006 Uwe R. Zimmer, The Australian National University Page 266 of 516 (Chapter 6: to 306)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Scheduling

First come, first served (FCFS) – bad case: (arrival order: , ,)

Waiting time: 0…11; average: 5.95 – Turnaround time: 3…12; average: 8.47

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

© 2006 Uwe R. Zimmer, The Australian National University Page 267 of 516 (Chapter 6: to 306)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Scheduling

First come, first served (FCFS) – nice case: (arrival order: , ,)

Waiting time: 0…11; average: 5.47 – Turnaround time: 3…12; average: 8.00

☞ The actual average waiting time for FCFS may vary here between: 5.47 and 5.95

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

© 2006 Uwe R. Zimmer, The Australian National University Page 268 of 516 (Chapter 6: to 306)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Scheduling

Round robin (RR) – pre-emption

Waiting time: 0…4; average: 1.21 – Turnaround time: 1…19; average: 5.63

☞ Waiting and average turnaround time is going down, but maximal turnaround time is going up

… assuming that task-switching is free and always possible

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

© 2006 Uwe R. Zimmer, The Australian National University Page 269 of 516 (Chapter 6: to 306)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Scheduling

Feedback with 2i pre-emption intervals – pre-emption

• implement multiple
hierarchical ready-queues

• fetch processes from the highest
filled ready queue

• dispatch more CPU time for lower
priorities (units)

☞ processes on lower ranks may
suffer starvation

☞ new and short tasks
will be preferred

C
PU

priority 0

priority 1

executingadmit

dispatch 20

priority i

dispatch 21

dispatch 2i

2i

© 2006 Uwe R. Zimmer, The Australian National University Page 270 of 516 (Chapter 6: to 306)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Scheduling

Feedback with 2i pre-emption intervals – pre-emption

Waiting time: 0…6; average: 1.79 – Turnaround time: 1…21; average 5.63

☞ less task switches than RR,
but long processes can suffer starvation!

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

© 2006 Uwe R. Zimmer, The Australian National University Page 271 of 516 (Chapter 6: to 306)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Scheduling

Shortest job first (SJF) – Ci is known

Waiting time: 0…10; average: 3.47 – Turnaround time: 1…14; average: 6.00

☞ on average this is doing better than FCFS

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

© 2006 Uwe R. Zimmer, The Australian National University Page 272 of 516 (Chapter 6: to 306)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Scheduling

Highest response ratio first (HRRF) – Ci is known

Response ratio: – Waiting time: 0…9; average: 4.11 – Turnaround time: 1…13; average 6.63

☞ on average this is doing worse than SJF,
but the maximal waiting and turnaround times and variance might be reduced!

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

Wi Ci+() Ci⁄

© 2006 Uwe R. Zimmer, The Australian National University Page 273 of 516 (Chapter 6: to 306)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Scheduling

Shortest remaining time first (SRTF) – Ci is known + pre-emption

Waiting time: 0…6; average: 1.05 – Turnaround time: 1…18; average 4.42

☞ on average this is doing better than FCFS, SJF or HRRF,
but the maximal turnaround time is going up and there are many task-switches!

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

© 2006 Uwe R. Zimmer, The Australian National University Page 274 of 516 (Chapter 6: to 306)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Scheduling

Non-realtime scheduling methods

☞ CPU utilization: 100% in all cases.

☞ Pre-emptive methods perform better, assuming that the overhead is negligible.

☞ Knowledge of (computation times) has a significant impact on scheduler performance.

1 5 15 20 25 30 35 40 4510 50 t

FCFS

RR

FB 2i

SJF

HRRF

SRTF

Ci

© 2006 Uwe R. Zimmer, The Australian National University Page 275 of 516 (Chapter 6: to 306)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Non-realtime scheduling methods

Selection
Pre-

emption

Waiting Turnaround Preferred
processes

Starvation
possible? in high load situations

FCFS no possibly long possibly long long no

RR equal share yes bound possibly long none no

Feedback priority queues yes short on average
very short on aver-

age, large maximum
short yes

SJF no short on average short on average short yes

HRRF no
short on average,

lower variance
short on average,

lower variance

balanced,
towards

short
no

SRTF yes
very short
on average

very short on aver-
age, large maximum

short yes

max Wi()

min Ci()

max
Wi Ci+

Ci

⎝ ⎠
⎜ ⎟
⎛ ⎞

min Ci Ei–()

© 2006 Uwe R. Zimmer, The Australian National University Page 276 of 516 (Chapter 6: to 306)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Predictable scheduling

Towards predictable scheduling …

☞ Task behaviours are more specified (restricted).

☞ Task requirements are more specific (time scopes).

☞ Task sets are often fully or mostly static.

☞ Sporadic and urgent requests (e.g. user interaction, alarms) need to be addressed.

¬ CPU-utilization and throughput (system oriented performance measures) are not important!

© 2006 Uwe R. Zimmer, The Australian National University Page 277 of 516 (Chapter 6: to 306)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Specifying timing requirements

Temporal scopes

Common attributes:
• Minimal & maximal

delay after creation

• Maximal elapsed time

• Maximal execution time

• Absolute deadline
Task i

t1 5 20 25 3010

deadline

min. delay
max. delay

max. elapse time

created

max. exec. time

© 2006 Uwe R. Zimmer, The Australian National University Page 278 of 516 (Chapter 6: to 306)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Specifying timing requirements

Temporal scopes

Common attributes:
• Minimal & maximal

delay after creation

• Maximal elapsed time

• Maximal execution time

• Absolute deadline
Task i

t1 5 20 25 3010

deadline

execution time

min. delay
max. delay

activated

suspended

re-activated

terminated

created

elapse time

max. elapse time
max. exec. time

© 2006 Uwe R. Zimmer, The Australian National University Page 279 of 516 (Chapter 6: to 306)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Specifying timing requirements

Some common scope attributes
Temporal Scopes can be:

Deadlines (absolute, elapse, or execution time) can be:

Periodic – e.g. controllers, samplers, monitors

Aperiodic – e.g. ‘periodic on average’ tasks, burst requests

Sporadic / Transient – e.g. mode changes, occasional services

Hard – single failure leads to severe malfunction

Firm – results are meaningless after the deadline

– only multiple or permanent failures threaten the whole system
Soft

– results may still by useful after the deadline

© 2006 Uwe R. Zimmer, The Australian National University Page 280 of 516 (Chapter 6: to 306)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Predictable scheduling

A simple process model

• The number of processes in the system is fixed.

• All processes are periodic and all periods are known.

• All deadlines are identical with the process cycle times (periods).

• The worst case execution time is known for all processes.

• All processes are independent.

• All processes are released at once.

• The task-switching overhead is negligible.

☞ this model can only be applied to a very specific group of systems.
(more real-world extensions to this model will be discussed in other courses).

© 2006 Uwe R. Zimmer, The Australian National University Page 281 of 516 (Chapter 6: to 306)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Predictable scheduling

Introducing deadlines

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

© 2006 Uwe R. Zimmer, The Australian National University Page 282 of 516 (Chapter 6: to 306)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Dynamic scheduling

Earliest deadline first (EDF)
1. Determine (one of) the processe(s) with the closest deadline.

2. Execute this process

2-a until it finishes

2-b or until another process’ deadline is found closer than the current one.

☞ Pre-emptive scheme

☞ Dynamic scheme,
since the dispatched process is selected at run-time, due to the current deadlines.

© 2006 Uwe R. Zimmer, The Australian National University Page 283 of 516 (Chapter 6: to 306)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Dynamic scheduling: Earliest Deadline First (EDF)

Earliest deadline first

1. Schedule the earliest deadline first

2. Avoid task switches (in case of equal deadlines)

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

© 2006 Uwe R. Zimmer, The Australian National University Page 284 of 516 (Chapter 6: to 306)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Dynamic scheduling: Earliest Deadline First (EDF)

Earliest deadline first: Response times

worst case response times (maximal time in which the request from task is served):

☞ can be close or identical to deadlines.

☞ small or none spare capacity, if any task misses its expected computation time.

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

R
RR

Ri Ti

© 2006 Uwe R. Zimmer, The Australian National University Page 285 of 516 (Chapter 6: to 306)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Dynamic scheduling: Earliest Deadline First (EDF)

Earliest deadline first: Maximal utilization

☞ maximal possible utilization: ☞ sufficient & necessary test!

with the computation and cycle times of task i
(the deadlines are assumed to be identical with the cycles times here)

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

Ci
Ti

i 1=

n

∑ 1≤

Ci Ti,
Di Ti

© 2006 Uwe R. Zimmer, The Australian National University Page 286 of 516 (Chapter 6: to 306)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Static scheduling

Fixed Priority Scheduling (FPS), rate monotonic
1. Each process is assigned a fixed priority according to its cycle time :

2. At any point in time: dispatch the process with the highest priority

☞ Pre-emptive scheme

☞ Static scheme,
since the dispatch order of processes is fixed and calculated off-line.

Ti

Ti Tj< Pi Pj>⇒

© 2006 Uwe R. Zimmer, The Australian National University Page 287 of 516 (Chapter 6: to 306)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Static scheduling

Fixed Priority Scheduling (FPS), rate monotonic

Rate monotonic ordering is optimal
(in the framework of fixed priority schedulers)

i.e. if a process set is schedulable under a FPS-scheme,
then it is also schedulable by applying rate monotonic priorities.

© 2006 Uwe R. Zimmer, The Australian National University Page 288 of 516 (Chapter 6: to 306)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Rate monotonic priorities

max. utilization test: ☞ sufficient, but not necessary test!

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

aaaa

3
2
1

Ci
Ti

i 1=

n

∑ N 2

1
N

1–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

≤

© 2006 Uwe R. Zimmer, The Australian National University Page 289 of 516 (Chapter 6: to 306)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Rate monotonic priorities

utilization test: ☞ not guaranteed!

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

aaaa

3
2
1

Ci
Ti

i 1=

n

∑ 1= 0.779 N 2

1
N

1–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

≈>

© 2006 Uwe R. Zimmer, The Australian National University Page 290 of 516 (Chapter 6: to 306)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Rate monotonic priorities (reduced requests)

☞ utilization: ; ☞ not guaranteed!

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,6)

3
2
1

6
16
------ 3

12
------ 1

4
---+ + 0.875= 0.779 3 2

1
3

1–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

≈>
Ci
Ti

i 1=

n

∑ N 2

1
N

1–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

≤

© 2006 Uwe R. Zimmer, The Australian National University Page 291 of 516 (Chapter 6: to 306)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Rate monotonic priorities (further reduced requests)

☞ utilization: ; ☞ guaranteed!

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,4)

3
2
1

4
16
------ 3

12
------ 1

4
---+ + 0.75= 0.779 3 2

1
3

1–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

≈≤
Ci
Ti

i 1=

n

∑ N 2

1
N

1–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

≤

© 2006 Uwe R. Zimmer, The Australian National University Page 292 of 516 (Chapter 6: to 306)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Response time analysis (further reduced requests)

☞ calculate the worst case response times for each task individually.

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,4)

3
2
1

© 2006 Uwe R. Zimmer, The Australian National University Page 293 of 516 (Chapter 6: to 306)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Response time analysis (further reduced requests)

☞ for the highest priority task:

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,4)

R3

3
2
1

R3 C3=

© 2006 Uwe R. Zimmer, The Australian National University Page 294 of 516 (Chapter 6: to 306)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Response time analysis (further reduced requests)

☞ for other tasks: = computation + interference

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,4)

R1

3
2
1

Ri Ci Ii+= Ci Ii

© 2006 Uwe R. Zimmer, The Australian National University Page 295 of 516 (Chapter 6: to 306)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Response time analysis (further reduced requests)

for other tasks:

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,4)

R1

3
2
1

Ri Ci
Ri

Tj
----- Cj

j i>
∑+=

© 2006 Uwe R. Zimmer, The Australian National University Page 296 of 516 (Chapter 6: to 306)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Response time analysis (further reduced requests)

☞ ; ; and

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,4)

R1

3
2
1

R3
R2

R3 1✔= R2 4✔= R1 10✔=
Ci

Ti

i 1=

n

∑ N 2

1
N

1–
⎝ ⎠
⎜ ⎟
⎛ ⎞

✔≤

© 2006 Uwe R. Zimmer, The Australian National University Page 297 of 516 (Chapter 6: to 306)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Response time analysis (reduced requests)

☞ ; ; but

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,6)

R1

3
2
1

R3
R2

R3 1✔= R2 4✔= R1 12✔=
Ci

Ti

i 1=

n

∑ N 2

1
N

1–
⎝ ⎠
⎜ ⎟
⎛ ⎞

✖>

© 2006 Uwe R. Zimmer, The Australian National University Page 298 of 516 (Chapter 6: to 306)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Response time analysis (full requests)

☞ ; ; and

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

aaaa

3
2
1

R3 1✔= R2 4✔= R1 19✖=
Ci

Ti

i 1=

n

∑ N 2

1
N

1–
⎝ ⎠
⎜ ⎟
⎛ ⎞

✖>

© 2006 Uwe R. Zimmer, The Australian National University Page 299 of 516 (Chapter 6: to 306)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Dynamic scheduling: Earliest Deadline First (EDF)

Response time analysis (full requests)

☞ testing all combinations in a hyper-period: LCM of — here: 48

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

Ti{ }

© 2006 Uwe R. Zimmer, The Australian National University Page 300 of 516 (Chapter 6: to 306)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Dynamic scheduling: Earliest Deadline First (EDF)

Response time analysis (full requests)

☞ testing all combinations in a hyper-period: LCM of — here: 48

: = ; : = ; : =

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

R
R

R

Ti{ }

R 16 16✔≤ T R 12 12✔≤ T R 4 4✔≤ T

© 2006 Uwe R. Zimmer, The Australian National University Page 301 of 516 (Chapter 6: to 306)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Dynamic scheduling: Earliest Deadline First (EDF)

Response time analysis (reduced requests)

☞ relaxed task-set changes:

: = ; : = ; : =

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,6)

R RR

R 16 12→ 16✔≤ T R 12 8→ 12✔≤ T R 4 1→ 4✔≤ T

© 2006 Uwe R. Zimmer, The Australian National University Page 302 of 516 (Chapter 6: to 306)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Dynamic scheduling: Earliest Deadline First (EDF)

Response time analysis (further reduced requests)

☞ further relaxed task-set changes:

: = ; : = ; : =

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,4)

R RR

R 12 10→ 16✔≤ T R 8 6→ 12✔≤ T R 1 1→ 4✔≤ T

© 2006 Uwe R. Zimmer, The Australian National University Page 303 of 516 (Chapter 6: to 306)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Real-time scheduling

Response time analysis (comparison)

Fixed Priority Scheduling Earliest Deadline First

utilization
test

response
times

utilization
test

response
times

✖ (1.000) ✔ (1.000)

✖ (0.875) ✔ (0.875)

✔ (0.750) ✔ (0.750)

check full
hyper-cycle

Ri{ } Ri{ }

Ti Ci,(){ } 16 8,() 12 3,() 4 1,();;{ }= ✖ 4 1, ,{ } 16 12 4, ,{ }

Ti Ci,(){ } 16 6,() 12 3,() 4 1,();;{ }= 12 4 1, ,{ } 12 8 1, ,{ }

Ti Ci,(){ } 16 4,() 12 3,() 4 1,();;{ }= 10 4 1, ,{ } 10 6 1, ,{ }

Ci
Ti

i 1=

n

∑ N 2

1
N

1–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

≤ Ci
Ri
Tj
----- Cj

j i>
∑+

Ci
Ti

i 1=

n

∑ 1≤

© 2006 Uwe R. Zimmer, The Australian National University Page 304 of 516 (Chapter 6: to 306)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Real-time scheduling

Fixed Priority Scheduling ↔ Earliest Deadline First

• EDF can handle higher (full) utilization than FPS.

• FPS is easier to implement and implies less run-time overhead

• Graceful degradation features (resource is over-booked):

• FPS: processes with lower priorities will always miss their deadlines first.
• EDF: any process can miss its deadline ☞ and can trigger a cascade of failed deadlines.

• Response time analysis and utilization tests:

• FPS: O(n) utilization test — response time analysis: fixed point equation
• EDS: O(n) utilization test — response time analysis: fixed point equation in hyper-cycle

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Selection
Pre-

emption
Waiting Turnaround

Preferred
processes

Starvation
possible?

FCFS no possibly long possibly long long no

RR equal share yes bound possibly long none no

Feedback priority queues yes short on average
very short on aver-

age, large maximum
short yes

SJF no short on average short on average short yes

HRRF no
short on average,

lower variance
short on average,

lower variance
balanced no

SRTF yes
very short
on average

very short on aver-
age, large maximum

short yes

FPS yes priority based priority based
higher
priority

yes

EDF yes deadline based
often close

to deadlines
most

urgent
no

max Wi()

min Ci()

max Wi Ci+() Ci⁄()

min Ci Ei–()

max Pi()

min Di()

© 2006 Uwe R. Zimmer, The Australian National University Page 306 of 516 (Chapter 6: to 306)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Summary

Scheduling

• Basic performance based scheduling

• is not known: first-come-first-served (FCFS), round robin (RR),
and feedback-scheduling

• is known: shortest job first (SJF), highest response ration first (HRRF),
shortest remaining time first (SRTF)-scheduling

• Basic predictable scheduling

• Fixed Priority Scheduling (FPS) with Rate Monotonic (RMPO)
• Earliest Deadline First (EDF)

Ci

Ci

7
Safety & Liveness

Uwe R. Zimmer
The Australian National University

© 2006 Uwe R. Zimmer, The Australian National University Page 308 of 516 (Chapter 7: to 348)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

References for this chapter

[Ben-Ari90]
M. Ben-Ari
Principles of Concurrent
and Distributed Programming
1990
Prentice-Hall,
ISBN 0-13-711821-X

[Bacon98]

J. Bacon

Concurrent Systems

1998 (2nd Edition)
Addison Wesley Longman Ltd,
ISBN 0-201-17767-6

© 2006 Uwe R. Zimmer, The Australian National University Page 309 of 516 (Chapter 7: to 348)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Models and Terminology

Correctness in concurrent systems

Extended concepts of correctness in concurrent systems:

¬ Termination is often not intended or even considered a failure

• Safety properties:

where means that does always hold

• Liveness properties:

where means that does eventually hold (and will then stay true)
and is the current state of the concurrent system

P I() Processes I S,()∧() Q I S,()⇒
Q Q

P I() Processes I S,()∧() Q I S,()◊⇒
 Q◊ Q

S

© 2006 Uwe R. Zimmer, The Australian National University Page 310 of 516 (Chapter 7: to 348)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Models and Terminology

Correctness in concurrent systems

• Liveness properties:

where means that does eventually hold (and will then stay true)

Examples:

• Requests need eventually to be completed

• The state of the system needs eventually be displayed to the outside

• No part of the system is to be delayed forever (fairness)

☞ Interesting liveness properties can be extremely hard to be proven

P I() Processes I S,()∧() Q I S,()◊⇒
 Q◊ Q

© 2006 Uwe R. Zimmer, The Australian National University Page 311 of 516 (Chapter 7: to 348)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Models and Terminology

one central liveness property: Fairness

• Liveness properties:

where means that does eventually hold (and will then stay true)

Fairness (as a means to avoid starvation):

• Weak fairness:
resource will eventually be granted, if a process requests continually

• Strong fairness:
resource will eventually be granted, if a process requests infinitely often

• Linear waiting: resource will be granted
 before any other process had the same resource granted more than once.

• First-in, first-out: resource will be granted
 before any other process which applied for the same resource at a later point in time.

P I() Processes I S,()∧() Q I S,()◊⇒
 Q◊ Q

 R◊ G◊⇒

 Ri◊ G◊⇒

© 2006 Uwe R. Zimmer, The Australian National University Page 312 of 516 (Chapter 7: to 348)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Models and Terminology

Correctness in concurrent systems

• Safety properties:

where means that does always hold

Examples:

• Mutual exclusion (no resource collisions)

• Absence of deadlocks
(and other forms of ‘silent death’ and ‘freeze’ conditions)

• Specified responsiveness or free capabilities
(typical in real-time / embedded systems or server applications)

P I() Processes I S,()∧() Q I S,()⇒
Q Q

© 2006 Uwe R. Zimmer, The Australian National University Page 313 of 516 (Chapter 7: to 348)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Deadlocks

Synchronization may lead to

☞ DEADLOCKS
(avoidance / prevention of those is one central safety property)

… a closer look on deadlocks
and what can be done about them …

© 2006 Uwe R. Zimmer, The Australian National University Page 314 of 516 (Chapter 7: to 348)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Deadlocks

Reserving resources in reverse order

var reserve_1, reserve_2: semaphore := 1;

process P1;
 statement X;

 wait (reserve_1);
 wait (reserve_2);
 statement Y; - employ resources
 signal (reserve_2);
 signal (reserve_1);

 statement Z;
end P1;

process P2;
 statement A;

 wait (reserve_2);
 wait (reserve_1);
 statement B; - employ resources
 signal (reserve_1);
 signal (reserve_2);

 statement C;
end P2;

Sequence of operations : [A | X] ➠ {[B ➠ Y] xor [Y ➠ B]} ➠ [C | Z]
or : [A | X] ➠ deadlocked!

© 2006 Uwe R. Zimmer, The Australian National University Page 315 of 516 (Chapter 7: to 348)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Deadlocks

Circular dependencies

var reserve_1, reserve_2, reserve_3: semaphore := 1;

process P1;
 statement X;

 wait (reserve_1);
 wait (reserve_2);
 statement Y;
 signal (reserve_2);
 signal (reserve_1);

 statement Z;
end P1;

process P2;
 statement A;

 wait (reserve_2);
 wait (reserve_3);
 statement B;
 signal (reserve_3);
 signal (reserve_2);

 statement C;
end P2;

process P3;
 statement K;

 wait (reserve_3);
 wait (reserve_1);
 statement L;
 signal (reserve_1);
 signal (reserve_3);

 statement M;
end P3;

Sequence of operations : [A | X | K] ➠ {[B ➠ Y➠ L] xor …} ➠ [C | Z | M]
or : [A | X | K] ➠ deadlocked!

© 2006 Uwe R. Zimmer, The Australian National University Page 316 of 516 (Chapter 7: to 348)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Deadlocks

Necessary deadlock conditions:

1. Mutual exclusion:
resources cannot be used simultaneously

2. Hold and wait:
a process applies for a resource, while it is holding another resource (sequential requests)

3. No pre-emption:
resources cannot be pre-empted; only the process itself can release resources

4. Circular wait:
a ring list of processes exists, where every process waits for release of a resource by the next one

☞ system may be deadlocked, if all these conditions apply!

© 2006 Uwe R. Zimmer, The Australian National University Page 317 of 516 (Chapter 7: to 348)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Deadlocks

Deadlock strategies:

1. Ignorance
☞ Kill unresponsive processes

2.Deadlock detection & recovery
☞ find deadlocked processes and recover the system in a coordinated way

3.Deadlock avoidance
☞ the resulting system state is checked before any resources are actually assigned

4.Deadlock prevention
☞ the system prevents deadlocks by its structure

© 2006 Uwe R. Zimmer, The Australian National University Page 318 of 516 (Chapter 7: to 348)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Deadlocks

Deadlock prevention
(remove one of the four deadlock conditions)

1. Mutual exclusion:
Applicable to specific cases only; usually this can only be removed by replication of resources.

2. Hold and wait:
Processes are forced to allocate all their required resources at once,
often at the time of admittance to the main dispatcher – done in many static realtime-systems.

3. No pre-emption:
If the current state of a resource can be stored and restored easily, then they can be pre-empted.
Usually resources are pre-empted from processes, which are currently not ready to run.

4. Circular wait:
A circular wait can be avoided by a global ordering of all resources, e.g. resources can only be
requested in a specific order – hard to maintain in a dynamic system configuration.

© 2006 Uwe R. Zimmer, The Australian National University Page 319 of 516 (Chapter 7: to 348)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

 ; vertices and edges

 ; vertices are processes or resource types:

 ; processes

 ; resource types

 ; claims, requests and assignments

 ; claims

 ; requests

 ; assignments

Note: a resource may have more than one instance

Pi

Rj

Pi

Rj

Pi

Rj

holds

requests

claims

RAG V E,{ }=
V P R∪=

P P1 P2 … Pn, , ,{ }=
R R1 R2 …Rk, ,{ }=

E Er Ea Ec∪ ∪=

Ec Pi Rj …,→{ }=
Er Pi Rj …,→{ }=
Ea Ri Pj …,→{ }=

© 2006 Uwe R. Zimmer, The Australian National University Page 320 of 516 (Chapter 7: to 348)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

the two process, reverse allocation deadlock:
P1

R1

Rj

P2

R2

© 2006 Uwe R. Zimmer, The Australian National University Page 321 of 516 (Chapter 7: to 348)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

no, there is no circular dependency
P1

R1

Rj

R3

P2

R2

P3

© 2006 Uwe R. Zimmer, The Australian National University Page 322 of 516 (Chapter 7: to 348)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

yes, there are circular dependencies:

as well as:

☞ IF some processes are deadlocked, THEN
there are cycles in the resource allocation graph

P1

R1

Rj

R3

P2 P3

R2P1 R1 P2 R3 P3 R2 P1→ → → → → →

P2 R3 P3 R2 P2→ → → →

© 2006 Uwe R. Zimmer, The Australian National University Page 323 of 516 (Chapter 7: to 348)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Deadlocks

Edge Chasing
(Chandy, Misra & Haas ☞ distributed version)

• send probe containing three process id’s:

[the blocked, the sending, the receiving process]

• propagate the probe to the process holding the resource,
which this process requests
(while updating the second and third proc.-id’s.)

☞ possible deadlock detected!

P1

R1

Rj

R3

P2 P3

R2

 blocking process:∀

 blocked process receiving a probe:∀

 blocking process receiving its own probe:∀

© 2006 Uwe R. Zimmer, The Australian National University Page 324 of 516 (Chapter 7: to 348)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

Assuming all claims of are known in advance,

☞ Could the deadlock situation be avoided?

P1

R1

Rj

R3

P2 P3

R2

P3

© 2006 Uwe R. Zimmer, The Australian National University Page 325 of 516 (Chapter 7: to 348)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

yes, when resources are assigned so that there
are no resulting circular dependencies:

☞ in this case: assign to (instead of)

P1

R1

Rj

R3

P2 P3

R2

R3 P2 P3

© 2006 Uwe R. Zimmer, The Australian National University Page 326 of 516 (Chapter 7: to 348)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

as well as:

☞ ARE some processes deadlocked, IF
there are cycles in the resource allocation graph?

P1

R1

Rj

R3

P2 P3

R2

P1 R1 P2 R3 P3 R2 P1→ → → → → →

P2 R3 P3 R2 P2→ → → →

© 2006 Uwe R. Zimmer, The Australian National University Page 327 of 516 (Chapter 7: to 348)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

yes,
if there is only one instance per resource type:

☞ IF there are cycles in the
resource allocation graph

AND there is only one instance per resource type,
THEN some processes are deadlocked!

P1

R1

Rj

P2

R2

© 2006 Uwe R. Zimmer, The Australian National University Page 328 of 516 (Chapter 7: to 348)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

no,
if there is more than one instance

per resource type:

☞ IF there are cycles in the
resource allocation graph

AND there is more than one instance per resource
type, THEN some processes may be deadlocked!

P1

R1

Rj

R3

P2 P3

P4

R2

© 2006 Uwe R. Zimmer, The Australian National University Page 329 of 516 (Chapter 7: to 348)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Deadlocks

How to detect deadlocks
in the general case?
(of multiple instances per resource)

P1

R1

Rj

R3

P2 P3

R2

© 2006 Uwe R. Zimmer, The Australian National University Page 330 of 516 (Chapter 7: to 348)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Deadlocks

Banker’s algorithm
There are processes and resource types in the system. Let and :

•
☞ the number of resources of type allocated by process .

•
☞ the number of available resources of type .

•
☞ the number of resources of type required by process to complete eventually.

•
☞ the number of currently requested resources of type by process .

Temporary variables:

• : boolean vector indicating processes, which may complete right now.

• : available resources, if some processes complete and de-allocate.

n m i 1…n∈ j 1…m∈

Allocated i j,[]
j i

Free j[]
j

Claimed i j,[]
j i

Request i j,[]
j i

Completed i[]
Simulated_Free j[]

© 2006 Uwe R. Zimmer, The Australian National University Page 331 of 516 (Chapter 7: to 348)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Deadlocks

Banker’s algorithm
Checking for a deadlock situation

1. ; :

2.While :
 and : do: {request i can be granted}

 :

3. If : then the system is deadlock-free!
(otherwise all processes with are deadlocked)

Simulated_Free Free⇐ i∀ Completed i[] False⇐

i∃ Completed i[]¬
j∀ Requested i j,[] Simulated_Free j[]<

j∀ Simulated_Free j[] Simulated_Free j[] Allocated i j,[]+⇐
Completed i[] True⇐

i∀ Completed i[]
i Completed i[] False=

© 2006 Uwe R. Zimmer, The Australian National University Page 332 of 516 (Chapter 7: to 348)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Deadlocks

Banker’s algorithm
Checking the current system state

1. ; :

2.While :
 and : do: {meaning process i can complete}

 :

3. If : then the system is safe!
(e.g. no process is currently deadlocked and no process can be deadlocked in any future state)

Simulated_Free Free⇐ i∀ Completed i[] False⇐

i∃ Completed i[]¬
j∀ Claimed i j,[] Simulated_Free j[]<

j∀ Simulated_Free j[] Simulated_Free j[] Allocated i j,[]+⇐
Completed i[] True⇐

i∀ Completed i[]

© 2006 Uwe R. Zimmer, The Australian National University Page 333 of 516 (Chapter 7: to 348)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Deadlocks

Banker’s algorithm

Checking the validity of a resource request

If (Request < Claimed) and (Request < Free) then

 Free := Free - Request;
 Claimed := Claimed - Request;
 Allocated := Allocated + Request;

 ☞ Apply system state check (as above)
 If System_is_safe then

 ☞ Actually grant request
 else
 -- restore former system state (Free, Claimed, Allocated)

 end if;
end if;

© 2006 Uwe R. Zimmer, The Australian National University Page 334 of 516 (Chapter 7: to 348)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Deadlocks

Deadlock detection / prevention
☞ Distributed version?

• Most resources are assigned to a local group of processes.

☞ Split the system into nodes

☞ Organize them as hierarchical trees or other topologies

☞ Check for deadlocks locally
☞ find local deadlocks immediately

☞ Exchange information about blocked tasks occasionally
☞ detect global deadlocks eventually

Menasce & Muntz – Ho & Ramamoorthy

© 2006 Uwe R. Zimmer, The Australian National University Page 335 of 516 (Chapter 7: to 348)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Deadlocks

Deadlock recovery

☞ Stop or restart one or multiple of the deadlocked processes and reclaim its resources

☞ Pre-empt one of the involved resources (and restore an earlier state of the victim process)

Deadlock recovery does not deal with the source of the problem!
(the system may deadlock again right away)

☞ use deadlock prevention or deadlock avoidance instead

© 2006 Uwe R. Zimmer, The Australian National University Page 336 of 516 (Chapter 7: to 348)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Summary

Deadlocks
• Ignorance & recovery

• ☞ ‘kill some seemingly persistently blocked processes from time to time’ (exasperation)

• Deadlock detection & recovery

• ☞ multiple methods for detection, e.g. resource allocation graphs, Banker’s algorithm
• ☞ recovery is mostly ‘ugly’

• Deadlock avoidance

• ☞ check system safety before allocating resources, e.g. Banker’s algorithm

• Deadlock prevention

• ☞ eliminate one of the pre-conditions for deadlocks

© 2006 Uwe R. Zimmer, The Australian National University Page 337 of 516 (Chapter 7: to 348)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Failure modes

Terminology

Reliability ::=
measure of success with which a system conforms to its specification

or
low failure rate.

Failure ::= deviation of a system from its specification
Error ::= system state which lead to failures
Fault ::= the reason for an error

© 2006 Uwe R. Zimmer, The Australian National University Page 338 of 516 (Chapter 7: to 348)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Failure modes

Faults on different levels

• Inconsistent or inadequate specification

☞ frequent source for disastrous faults

• Software design errors

☞ frequent source for disastrous faults

• Component & communication system failures

☞ rare and mostly predictable

© 2006 Uwe R. Zimmer, The Australian National University Page 339 of 516 (Chapter 7: to 348)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Failure modes

Faults in the logic domain

• Non-termination / -completion

☞ systems frozen in a deadlock state, blocked for missing input, or in infinite loop

• Value overruns, other inconsistent states

☞ sometimes caught by the run-time environment

• Wrong results

☞ wrong implementation with respect to the specification

© 2006 Uwe R. Zimmer, The Australian National University Page 340 of 516 (Chapter 7: to 348)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Failure modes

Faults in the time domain

• Transient faults

☞ many communication system failures, electric interference, etc.

• Intermittent faults

☞ transient errors which occur more than once (e.g. overheating effects)

• Permanent faults

☞ stay in the system until they are repaired by some means

© 2006 Uwe R. Zimmer, The Australian National University Page 341 of 516 (Chapter 7: to 348)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Failure modes

Observable failures states

Failure modes

Time domain

fail
silent

fail
stop

fail
controlled

fail
uncontrolled

Value
error

Constraint
error

fail
never

too
early

too
late

never
(omission)

never
(omission)

Value domain

© 2006 Uwe R. Zimmer, The Australian National University Page 342 of 516 (Chapter 7: to 348)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Reliability

Fault prevention, avoidance, removal, …

and / or

☞ Fault tolerance

© 2006 Uwe R. Zimmer, The Australian National University Page 343 of 516 (Chapter 7: to 348)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Reliability

Fault tolerance
• Full fault tolerance

the system continues to operate in the presence of ‘foreseeable’ error conditions
without any significant failures — also this might induct a reduced operation period.

• Graceful degradation (fail soft)

the system continues to operate in the presence of ‘foreseeable’ error conditions,
accepting a partial loss of functionality or performance.

• Fail safe

the system halts and maintains its integrity

☞ Full fault tolerance is not maintainable for an infinite operation time!

☞ Graceful degradation might have multiple levels of reduced functionality.

© 2006 Uwe R. Zimmer, The Australian National University Page 344 of 516 (Chapter 7: to 348)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Atomic & idempotent operations

Atomic operations
Definitions given in different scenarios:

An operation is atomic if the processes performing it …

• … are not aware of the existence of any other active process,
and no other active process is aware of the activity of the processes
during the time the processes are performing the action.

• … do not communicate with other processes while the action is being performed.

• … cannot detect any outside state change and
do not reveal their own state changes until the action is complete.

☞ … can be considered to be indivisible and instantaneous.

© 2006 Uwe R. Zimmer, The Australian National University Page 345 of 516 (Chapter 7: to 348)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Atomic & idempotent operations

Atomic operations
Important implications:

☞ An atomic operation …

• … is either performed fully, or not at all.

• … is declared as failed, if any part of the operation fails
 (and everything is reset to the original state).

© 2006 Uwe R. Zimmer, The Australian National University Page 346 of 516 (Chapter 7: to 348)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Atomic & idempotent operations

Atomic operations

Time-lines:

1

3

Atomic

t1 5 15 20 25 30 35 40 4510

2

4

© 2006 Uwe R. Zimmer, The Australian National University Page 347 of 516 (Chapter 7: to 348)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Atomic & idempotent operations

Idempotent operations

Definition:

An operation is idempotent if …

• … the observable effects of the operation are identical
after executing it once and after executing it multiple times.

Observations:
• Idempotent operations are often atomic, but do not need to be.

• Atomic operations do not need to be idempotent.

© 2006 Uwe R. Zimmer, The Australian National University Page 348 of 516 (Chapter 7: to 348)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Summary

Safety & Liveness
• Liveness

• Fairness

• Safety

• Deadlock detection
• Deadlock avoidance
• Deadlock prevention

• Failure modes

• Definitions, fault sources and basic fault tolerance

• Atomic & Idempotent operations

• Definitions & implications

8
Architectures

Uwe R. Zimmer
The Australian National University

© 2006 Uwe R. Zimmer, The Australian National University Page 350 of 516 (Chapter 8: to 392)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

References for this chapter

[Bacon98]
J. Bacon
Concurrent Systems
1998 (2nd Edition)
Addison Wesley Longman Ltd,
ISBN 0-201-17767-6

© 2006 Uwe R. Zimmer, The Australian National University Page 351 of 516 (Chapter 8: to 392)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Operating System based architectures

Language architectures

(Some workfloor languages are already introduced at this point,
so we turn to another style of clean concurrent architectures here)

© 2006 Uwe R. Zimmer, The Australian National University Page 352 of 516 (Chapter 8: to 392)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

occam 2.1

William of Ockham (born at Ockham in Surrey (England) in 1280 and died in Munich in 1349):

• Philosopher and Franciscan monk

• Reasoning in the frame of the school of Nominalism:

• … science has nothing to do directly with things, but only with concepts of them
• … leading to the absolute subjectivity of all concepts and universals

• Pioneer of modern Epistemology
(will also help to develop the concept of Phenomenology 500 years later)

• ‘Occam’s razor’:

“Pluralitas non est ponenda sine neccesitate”
or “plurality should not be posited without necessity”

(a common place in medieval philosophy)

© 2006 Uwe R. Zimmer, The Australian National University Page 353 of 516 (Chapter 8: to 392)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

occam 2.1

Origins:
• EPL (Experimental Programming Language) by David May

• CSP (Communicating Sequential Processes) by Tony Hoare

• “Dijkstra-Style” programming

Goals:
• Minimalist approach (☞ Occam’s razor) supplying all means for:

☞ Concurrency & communication,
☞ Distributed systems

☞ Realtime / Predictable systems

© 2006 Uwe R. Zimmer, The Australian National University Page 354 of 516 (Chapter 8: to 392)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

occam 2.1

Implementations:
• Transputer networks as an hardware implementation of the occam architecture

(inmos, now SGS-Thomson)

• spoc (Southampton Portable occam Compiler)

• KRoC (Kent Retargetable Occam Compiler)

Historical:
• 1982: First conception

• 1992: occam 3 (draft)

• 1994: latest complete version: 2.1

Current state: academic (education)

© 2006 Uwe R. Zimmer, The Australian National University Page 355 of 516 (Chapter 8: to 392)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

occam 2.1

Characteristics (... everything is a process):

• Primitive processes are

• assignments
• input, or output statements (channel operations)
• SKIP, or STOP (elementary processes)

• Constructors are:

• SEQ (sequence) + replication
• PAR (parallel) + replication
• ALT (alternation) + replication + priorities

• IF (conditional) + replication
• CASE (selection)
• WHILE (conditional loop)

© 2006 Uwe R. Zimmer, The Australian National University Page 356 of 516 (Chapter 8: to 392)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

occam 2.1

Characteristics (… everything is a process and static):

☞ no dynamic process creation

☞ no unlimited recursion

Syntax structure:
• Indention is used block indication

(instead of ‘begin-end brackets’)

Scope of names:
• strictly local, indicated by indention

• no ‘forward declarations’, ‘exports’, ‘global variables’, or ‘shared memories’

© 2006 Uwe R. Zimmer, The Australian National University Page 357 of 516 (Chapter 8: to 392)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

occam 2.1

An example

• use processes and channels
to implement a simple prime sieve

Starter

Sieve
[1]

3,5,7,…

Sieve
[2]

5,7,11,,…

Sieve
[3]

7,11,13,…

Printer

2

3

5

7

Sieve
[4]

11,13,17,…

Sieve
[5]

13,17,19,… Sieve
[6]

17,19,23,…

11 1713
Sieve

[7]

19,23,29,…

Sieve
[n]

…,…,…

Ender

19

…,…,…

…

…

© 2006 Uwe R. Zimmer, The Australian National University Page 358 of 516 (Chapter 8: to 392)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

occam 2.1

VAL INT n IS 50:
 -- # of primes to be generated

VAL INT limit is 1000:
 -- range to check

[n-2] CHAN of INT link:
 -- links between filters

[n-1] CHAN of INT prime:
 -- channels to Print process

CHAN OF INT display:
PLACE display AT 1:
 -- output display to device 1

Starter

Sieve
[1]

3,5,7,…

Sieve
[2]

5,7,11,,…

Sieve
[3]

7,11,13,…

Printer

2

3

5

7

Sieve
[4]

11,13,17,…

Sieve
[5]

13,17,19,… Sieve
[6]

17,19,23,…

11 1713
Sieve

[7]

19,23,29,…

Sieve
[n]

…,…,…

Ender

19

…,…,…

…

…

© 2006 Uwe R. Zimmer, The Australian National University Page 359 of 516 (Chapter 8: to 392)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

occam 2.1

PROC Starter
 (CHAN OF INT out, print)
 -- feed number into the chain

INT i:
 SEQ
 print ! 2 -- 2 is prime
 i := 3
 WHILE i < limit
 SEQ
 out ! i
 i := i + 2:
 -- generate odd numbers

PROC Sieve
 (CHAN OF INT in, out, print)
 -- filter out one prime

INT p, next:
 SEQ
 in ? p
 print ! p -- p is prime
 WHILE TRUE
 SEQ
 in ? next
 IF
 (next\p) <> 0 -- remainder?
 out ! next
 TRUE
 SKIP

© 2006 Uwe R. Zimmer, The Australian National University Page 360 of 516 (Chapter 8: to 392)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

occam 2.1

PROC Ender
 (CHAN OF INT in, print)
 -- consume rest of numbers

INT p:
 SEQ
 in ? p
 print ! p -- p is prime
 WHILE TRUE
 in ? p:

PROC Printer ([] CHAN OF INT value)
 -- print each prime, in order

INT p:
 SEQ i = 0 FOR SIZE value
 SEQ
 value [i] ? p
 display ! p:

PAR -- main program

 Starter (link [0], prime [0])
 PAR i = 1 FOR n-2
 Sieve (link [i-1],
 link [i],
 prime [i])
 Ender (link [n-1], prime [n-1])
 Printer (prime)

© 2006 Uwe R. Zimmer, The Australian National University Page 361 of 516 (Chapter 8: to 392)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

occam 2.1 versus Ada95

occam 2.1 Ada95

Addressing: one-to-one many-to-one

message formats defined by: the channels’ profiles
the ‘accepting’ tasks’
parameter profiles

synchronization form: rendezvous

data-flow: one way
one way or two ways

(extended rendezvous)

selection of open alternatives: non-deterministic

Processes: static dynamic

shared memory (‘monitors’): - yes

© 2006 Uwe R. Zimmer, The Australian National University Page 362 of 516 (Chapter 8: to 392)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Operating System based architectures

Operating systems architectures

© 2006 Uwe R. Zimmer, The Australian National University Page 363 of 516 (Chapter 8: to 392)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Operating System based architectures

Hardware environments / configurations:

• stand-alone, universal, single-processor machines

• symmetrical multiprocessor-machines

• local distributed systems

• open, web-based systems

• dedicated/embedded computing

What is the common ground for operating systems?

What is an operating system?

© 2006 Uwe R. Zimmer, The Australian National University Page 364 of 516 (Chapter 8: to 392)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

What is an operating system?

1. A virtual machine!
… offering a more comfortable, robust, reliable, flexible … machine

Hardware

OS

Tasks

Typ. general OS

Hardware
RT-OS

Tasks

Typ. real-time system

Hardware

Tasks

Typ. embedded system

run-time
environment

© 2006 Uwe R. Zimmer, The Australian National University Page 365 of 516 (Chapter 8: to 392)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

What is an operating system?

2. A resource manager!
… dealing with all sorts of devices and coordinating access

Operating systems deal with

• processors,

• memory

• mass storage

• communication channels

• devices
(timers, special purpose processors, interfaces, …)

☞ and many tasks/processes/programs, which are applying for access to these resources

© 2006 Uwe R. Zimmer, The Australian National University Page 366 of 516 (Chapter 8: to 392)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

What is an operating system?

Is there a standard set of features for an operating system?
☞ no,

the term ‘operating systems’ covers 4KB kernels,
as well as 1GB installations of general purpose OSs.

Is there a minimal set of features?
☞ almost,

memory management, process management and inter-process communication/synchronization
will be considered essential in most systems.

Is there always an explicit operating system?
☞ no,

some languages and development systems operate with stand-alone run-time-environments.

© 2006 Uwe R. Zimmer, The Australian National University Page 367 of 516 (Chapter 8: to 392)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

The evolution of operating systems

• in the beginning: single user, single program, single task, serial processing ☞ no OS

• 50s: System monitors / batch processing
☞ the monitor ordered the sequence of jobs and triggered their sequential execution

• 50s-60s: Advanced system monitors / batch processing:
☞ the monitor is handling interrupts and timers
☞ first support for memory protection
☞ first implementations of privileged instructions (accessible by the monitor only).

• early 60s: Multiprogramming systems:
☞ employ the long device I/O delays for switches to other, runable programs

• early 60s: Multiprogramming, time-sharing systems:
☞ assign time-slices to each program and switch regularly

• early 70s: Multitasking systems – multiple developments resulting in UNIX (besides others)

• early 80s: single user, single tasking systems, with emphasis on user interface (MacOS) or APIs.
MS-DOS, CP/M, MacOS and others first employed ‘small scale’ CPUs (personal computers).

• mid-80s: Distributed/multiprocessor operating systems - modern UNIX systems (SYSV, BSD)

© 2006 Uwe R. Zimmer, The Australian National University Page 368 of 516 (Chapter 8: to 392)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

The evolution of communication systems

• 1901: first wireless data transmission (Morse-code from ships to shore)

• ‘56: first transmission of data through phone-lines

• ‘62: first transmission of data via satellites (Telstar)

• ‘69: ARPA-net (predecessor of the current internet)

• 80s: introduction of fast local networks (LANs): ethernet, token-ring

• 90s: mass introduction of wireless networks (LAN and WAN)

Currently: standard consumer computers come with

• High speed network connectors (e.g. GB-ethernet)
• Wireless LAN (e.g. IEEE802.11g)
• Local device bus-system (e.g. firewire)
• Wireless local device network (e.g. bluetooth)
• Infrared communication (e.g. IrDA)
• Modem/ADSL

© 2006 Uwe R. Zimmer, The Australian National University Page 369 of 516 (Chapter 8: to 392)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Types of current operating systems

Personal computing systems, workstations, and workgroup servers:
• late 70s: Workstations starting by porting UNIX or VMS to ‘smaller’ computers.

• 80s: PCs starting with almost none of the classical OS-features and services,
but with an user-interface (MacOS) and simple device drivers (MS-DOS)

☞ last 20 years: evolving and expanding into current general purpose OSs:

• Solaris (based on SVR4, BSD, and SunOS)
• LINUX (open source UNIX re-implementation for x86 processors and others)
• current Windows (proprietary, partly based on Windows NT, which is ‘related’ to VMS)
• MacOS X (Mach kernel with BSD Unix and an proprietary user-interface)

• Multiprocessing is supported by all these OSs to some extend.

• None of these OSs are suitable for embedded systems, also trials have been performed.

• None of these OSs are suitable for distributed or real-time systems.

© 2006 Uwe R. Zimmer, The Australian National University Page 370 of 516 (Chapter 8: to 392)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Types of current operating systems

Parallel operating systems

• support for a large number of processors, either:

• symmetrical:
each CPU has a full copy of the operating system

or
• asymmetrical:

only one CPU carries the full operating system,
the others are operated by small operating system stubs to transfer code or tasks.

© 2006 Uwe R. Zimmer, The Australian National University Page 371 of 516 (Chapter 8: to 392)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Types of current operating systems

Distributed operating systems

• all CPUs carry a small kernel operating system for communication services.

• all other OS-services are distributed over available CPUs

• services may migrate

• services can be multiplied in order to

• guarantee availability (hot stand-by)
• or to increase throughput (heavy duty servers)

© 2006 Uwe R. Zimmer, The Australian National University Page 372 of 516 (Chapter 8: to 392)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Types of current operating systems

Real-time operating systems

• Fast context switches?

• Small size?

• Quick responds to external interrupts?

• Multitasking?

• ‘low level’ programming interfaces?

• Interprocess communication tools?

• High processor utilization?

© 2006 Uwe R. Zimmer, The Australian National University Page 373 of 516 (Chapter 8: to 392)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Types of current operating systems

Real-time operating systems

• Fast context switches? ☞ should be fast anyway

• Small size? ☞ should be small anyway

• Quick responds to external interrupts? ☞ not ‘quick’, but predictable

• Multitasking? ☞ real time systems are often multitasking systems

• ‘low level’ programming interfaces? ☞ needed in many operating systems

• Interprocess communication tools? ☞ needed in almost all operating systems

• High processor utilization? ☞ fault tolerance builds on redundancy!

© 2006 Uwe R. Zimmer, The Australian National University Page 374 of 516 (Chapter 8: to 392)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Types of current operating systems

Real-time operating systems requesting …

☞ the logical correctness of the results as well as

☞ the correctness of the time, when the results are delivered

☞ Predictability!
(not performance!)

☞ All results are to be delivered just-in-time – not too early, not too late.

Timing constraints are specified in many different ways …
… often as a response to ‘external’ events ☞ reactive systems

© 2006 Uwe R. Zimmer, The Australian National University Page 375 of 516 (Chapter 8: to 392)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Types of current operating systems

Embedded operating systems

• usually real-time systems, often hard real-time systems

• very small footprint (often a few KBs)

• none or limited user-interaction

☞ 90-95% of all processors are working here!

© 2006 Uwe R. Zimmer, The Australian National University Page 376 of 516 (Chapter 8: to 392)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Typical structures of operating systems

‘Monolithic’ or ‘the big mess’
• non-portable

• hard to maintain

• lacks reliability

• all services are in the kernel (on the same privilege level)

☞ may reach very high efficiency

e.g. most early UNIX implementations (70s),
MS-DOS (80s), Windows (basically all versions besides NT and NT-based editions),
MacOS (until version 9), … and many others …

Hardware

OS

Tasks

Monolithic

APIs

© 2006 Uwe R. Zimmer, The Australian National University Page 377 of 516 (Chapter 8: to 392)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Typical structures of operating systems

‘Monolithic & modular’
• Modules can be platform independent

• Easier to maintain and to develop

• Reliability is increased

• all services are still in the kernel (on the same privilege level)

☞ may reach very high efficiency

e.g. current LINUX versions

Hardware

OS

Tasks

Modular

APIs

M1 M1 Mn…

© 2006 Uwe R. Zimmer, The Australian National University Page 378 of 516 (Chapter 8: to 392)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Typical structures of operating systems

‘Monolithic & layered’
• easily portable

• significantly easier to maintain

• crashing layers do not necessarily stop the whole OS

• possibly reduced efficiency through many interfaces

• rigorous implementation of the stacked virtual machine perspective
on OSs

e.g. some current UNIX implementations (e.g. Solaris) to a certain degree,
many research OSs (e.g. ‘THE system’, Dijkstra ‘68)

Hardware

Tasks

Layered

M0

M1

Mn
OS

APIs

…

layers

© 2006 Uwe R. Zimmer, The Australian National University Page 379 of 516 (Chapter 8: to 392)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Typical structures of operating systems

‘µkernels and virtual machines’
• µkernel implements essential

process, memory, and message handling

• all ‘higher’ services are dealt with outside the
kernel ☞ no threat for the kernel stability

• significantly easier to maintain

• multiple OSs can be executed at the same time

• µkernel is highly hardware dependent
☞ only the µkernel need to be ported.

• possibly reduced efficiency through increased
communications

e.g. wide spread concept: as early as the CP/M, VM/370 (‘79)
or as recent as MacOS X (mach kernel + BSD unix)

Hardware

µkernel, virtual machine

µkernel

Tasks

M0

M1

Mn
OS

APIs

…

layersOS

Tasks

APIs

M1 M1 Mn…OS

Tasks

APIs

© 2006 Uwe R. Zimmer, The Australian National University Page 380 of 516 (Chapter 8: to 392)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Typical structures of operating systems

‘µkernels and client-server models’
• µkernel implements essential

process, memory, and message handling

• all ‘higher’ services are user-level servers

• kernel ensures the reliable message passing
between clients and servers

• highly modular and flexible

• servers can be redundant and easily replaced

• possibly reduced efficiency through increased
communications

e.g. current µkernel research projects

Hardware

µkernel, client server structure

µkernel

service mservice 1task 1 task n

© 2006 Uwe R. Zimmer, The Australian National University Page 381 of 516 (Chapter 8: to 392)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Typical structures of operating systems

‘µkernels and distributed systems’
• µkernel implements essential

process, memory, and message handling

• all ‘higher’ services are user-level servers

• kernel ensures reliable message passing
between clients and servers:
locally and via a communication system

• highly modular and flexible

• servers can be redundant and easily replaced

• possibly reduced efficiency through increased
communications

e.g. Java engines,
distributed real-time operating systems, current distributed OSs research projects

µkernel, distributed systems

task 1 task n service 1

µkernel µkernel

service m

µkernel

Hardware

Network

© 2006 Uwe R. Zimmer, The Australian National University Page 382 of 516 (Chapter 8: to 392)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

UNIX

UNIX features
• Hierarchical file-system (maintained via ‘mount’ and ‘demount’)

• Universal file-interface applied to files, devices (I/O), as well as IPC

• Dynamic process creation via duplication

• Choice of shells

• Internal structure as well as all APIs are based on ‘C’

• Relatively high degree of portability

☞ UNICS, UNIX, BSD, XENIX, System V, QNX, IRIX, SunOS, Ultrix, Sinix,
Mach, Plan 9, NeXTSTEP, AIX, HP-UX, Solaris, NetBSD, FreeBSD, Linux,
OPENSTEP, OpenBSD, Darwin, QNX/Neutrino, OS X, QNX RTOS, … … …

© 2006 Uwe R. Zimmer, The Australian National University Page 383 of 516 (Chapter 8: to 392)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

UNIX

Dynamic process creation
pid = fork ();

resulting in a duplication of the current process

• returning 0 to the newly created process (the ‘child’ process)

• returning the process id of the child process to the creating process (the ‘parent’ process)
or -1 for a failure

Frequent usage:
if (fork () == 0) {
… the child’s task …
… often implemented as: exec (“absolute path to executable file“, “args“);
exit (0); /* terminate child process */

} else {
… the parent’s task …
pid = wait (); /* wait for the termination of one child process */

}

© 2006 Uwe R. Zimmer, The Australian National University Page 384 of 516 (Chapter 8: to 392)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

UNIX

Synchronization in UNIX ☞ Signals

#include <unistd.h>
#include <sys/types.h>
#include <signal.h>

pid_t id;

void catch_stop (int sig_num)
{

/* do something with the signal */
}

id = fork ();

if (id == 0) {

signal (SIGSTOP, catch_stop);
pause ();
exit (0);

}

} else {

kill (id, SIGSTOP);
pid = wait ();

}

© 2006 Uwe R. Zimmer, The Australian National University Page 385 of 516 (Chapter 8: to 392)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

UNIX

Message passing in UNIX ☞ Pipes
int data_pipe [2], c, rc;

if (pipe (data_pipe) == -1) {
perror (“no pipe“); exit (1);

}

if (fork () == 0) {
close (data_pipe [1]);
while ((rc = read
(data_pipe [0], &c, 1)) > 0) {
putchar (c);

}
if (rc == -1) {
perror (“pipe broken“);
close (data_pipe [0]);
exit (1);

}
close (data_pipe [0]); exit (0);

} else {

close (data_pipe [0]);
while ((c = getchar ()) > 0) {
if (write
(data_pipe[1], &c, 1) == -1) {
perror (“pipe broken“);
close (data_pipe [1]);
exit (1);

};
}
close (data_pipe [1]);
pid = wait ();

}

© 2006 Uwe R. Zimmer, The Australian National University Page 386 of 516 (Chapter 8: to 392)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

UNIX

Processes & IPC in UNIX
Processes:

• Process creation results in a duplication of address space (‘copy-on-write’ becomes necessary)

☞ inefficient, but can generate new tasks out of any user process – no shared memory!

Signals:
• limited information content, no buffering, no timing assurances (signals are not interrupts!)

☞ very basic, yet not very powerful form of synchronization

Pipes:
• unstructured byte-stream communication, access is identical to file operations

☞ not sufficient to design client-server architectures or network communications

© 2006 Uwe R. Zimmer, The Australian National University Page 387 of 516 (Chapter 8: to 392)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

UNIX

Sockets in BSD UNIX (also in System V.R4)

Sockets try to keep the paradigm of a universal file interface for everything and introduce:

Connectionsless interfaces (e.g. UDP/IP):
• Server side: socket ➠ bind ➠ recvfrom ➠ close

• Client side: socket ➠ sendto ➠ close

Connection oriented interfaces (e.g. TCP/IP):
• Server side: socket ➠ bind ➠ {select} [connect | listen ➠ accept
 ➠ read | write ➠ [close | shutdown]

• Client side: socket ➠ bind ➠ connect ➠ write | read ➠ [close | shutdown]

© 2006 Uwe R. Zimmer, The Australian National University Page 388 of 516 (Chapter 8: to 392)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

POSIX

Portable Operating System Interface
for Computing Environments

• IEEE/ANSI Std 1003.1 and following

• Program Interface (API) [C Language]

• more than 30 different POSIX standards
(a system is ‘POSIX compliant’, if it implements parts of just one of them!)

© 2006 Uwe R. Zimmer, The Australian National University Page 389 of 516 (Chapter 8: to 392)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

POSIX – some of the real-time relevant standards

1003.1
12/01

OS Definition
single process, multi process, job control, signals, user groups, file system, file attributes, file
device management, file locking, device I/O, device-specific control, system database, pipes,
FIFO, …

1003.1b
10/93

Real-time
Extensions

real-time signals, priority scheduling, timers, asynchronous I/O, prioritized I/O, synchronized
I/O, file sync, mapped files, memory locking, memory protection, message passing, sema-
phore, …

1003.1c
6/95

Threads
multiple threads within a process; includes support for: thread control, thread attributes, pri-
ority scheduling, mutexes, mutex priority inheritance, mutex priority ceiling, and condition
variables

1003.1d
10/99

Additional Real-
time Extensions

new process create semantics (spawn), sporadic server scheduling, execution time monitor-
ing of processes and threads, I/O advisory information, timeouts on blocking functions, de-
vice control, and interrupt control

1003.1j
1/00

Advanced Real-
time Extensions

typed memory, nanosleep improvements, barrier synchronization, reader/writer locks, spin
locks, and persistent notification for message queues

1003.21
-/-

Distributed
Real-time

buffer management, send control blocks, asynchronous and synchronous operations,
bounded blocking, message priorities, message labels, and implementation protocols

© 2006 Uwe R. Zimmer, The Australian National University Page 390 of 516 (Chapter 8: to 392)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

POSIX – 1003.1b

Frequently employed POSIX features include:
• Threads: a common interface to threading - differences to ‘classical UNIX processes’

• Timers: delivery is accomplished using POSIX signals

• Priority scheduling: fixed priority, 32 priority levels

• Real-time signals: signals with multiple levels of priority

• Semaphore: named semaphore

• Memory queues: message passing using named queues

• Shared memory: memory regions shared between multiple processes

• Memory locking: no virtual memory swapping of physical memory pages

© 2006 Uwe R. Zimmer, The Australian National University Page 391 of 516 (Chapter 8: to 392)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

POSIX – other languages

POSIX is a ‘C’ standard …
… but bindings to other languages are also (suggested) POSIX standards:

• Ada: 1003.5*, 1003.24 (some PAR approved only, some withdrawn)

• Fortran: 1003.9 (6/92)

• Fortran90: 1003.19 (withdrawn)

… and there are POSIX standards for task-specific POSIX profiles, e.g.:

• Super computing: 1003.10 (6/95)

• Realtime: 1003.13, 1003.13b (3/98)

- profiles 51-54: combinations of the above RT-relevant POSIX standards ☞ RT-Linux

• Embedded Systems: 1003.13a (PAR approved only)

© 2006 Uwe R. Zimmer, The Australian National University Page 392 of 516 (Chapter 8: to 392)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Summary

Architectures

• Academic

• occam 2.1, CSP, …

• Workfloor

• Ada95, Java, …

• Environments / Operating Systems

• Operating systems architectures
• UNIX as a concept and basic UNIX features
• POSIX

9
Distributed Systems

Uwe R. Zimmer
The Australian National University

© 2006 Uwe R. Zimmer, The Australian National University Page 394 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

References for this chapter

[Ben-Ari90]
M. Ben-Ari
Principles of Concurrent
and Distributed Programming
Prentice Hall 1990,
ISBN 0-13-711821-X

[Bacon98]
J. Bacon
Concurrent Systems
1998 (2nd Edition)
Addison Wesley Longman Ltd,
ISBN 0-201-17767-6

[Schneider90]
Fred B. Schneider
Implementing fault-tolerant services
using the state machine approach
ACM Computing Surveys,
Vol. 22, No. 4, 299-319; 1990

[Tanenbaum03]
Andrew S. Tanenbaum
Computer Networks
Prentice Hall 2003 (4th Edition),
ISBN: 0-13-066102-3

[Tanenbaum01]
Andrew S. Tanenbaum
Distributed Systems: Principles and Paradigms
Prentice Hall, ISBN: 0-13-088893-1

© 2006 Uwe R. Zimmer, The Australian National University Page 395 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Network protocols & standards

OSI network reference model
• Standardized as the

Open Systems Interconnection (OSI) reference model
by the International Standardization Organization (ISO) in 1977

• 7 layer architecture

• Connection oriented

Hardy implemented anywhere as such …

…but its concepts and terminology are widely used,
when designing new protocols …

© 2006 Uwe R. Zimmer, The Australian National University Page 396 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Network protocols & standards

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

Network

Data link

Physical

User data User data

OSI Network Layers

© 2006 Uwe R. Zimmer, The Australian National University Page 397 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Network protocols & standards

1: Physical Layer

• Service: Transmission of a raw bit stream over a communication channel

• Functions: Conversion of bits into electrical or optical signals

• Examples: X.21, Ethernet (cable, detectors & amplifiers)

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

Network

Data link

Physical

User data User data

OSI Network Layers

© 2006 Uwe R. Zimmer, The Australian National University Page 398 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Network protocols & standards

2: Data Link Layer

• Service: Reliable transfer of frames over a link

• Functions: Synchronization, error correction, flow control

• Examples: HDLC (high level data link control protocol), LAP-B (link access procedure,

balanced), LAP-D (link access procedure, D-channel), LLC (link level control), …

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

Network

Data link

Physical

User data User data

OSI Network Layers

© 2006 Uwe R. Zimmer, The Australian National University Page 399 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Network protocols & standards

3: Network Layer

• Service: Transfer of packets inside the network

• Functions: Routing, addressing, switching, congestion control

• Examples: IP, X.25

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

Network

Data link

Physical

User data User data

OSI Network Layers

© 2006 Uwe R. Zimmer, The Australian National University Page 400 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Network protocols & standards

4: Transport Layer

• Service: Transfer of data between hosts

• Functions: Connection establishment, management, termination, flow
control, multiplexing, error detection

• Examples: TCP, UDP, ISO TP0-TP4

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

Network

Data link

Physical

User data User data

OSI Network Layers

© 2006 Uwe R. Zimmer, The Australian National University Page 401 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Network protocols & standards

5: Session Layer

• Service: Coordination of the dialogue between application programs

• Functions: Session establishment, management, termination

• Examples: RPC

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

Network

Data link

Physical

User data User data

OSI Network Layers

© 2006 Uwe R. Zimmer, The Australian National University Page 402 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Network protocols & standards

6: Presentation Layer

• Service: Provision of platform independent coding and encryption

• Functions: Code conversion, encryption, virtual devices

• Examples: ISO code

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

Network

Data link

Physical

User data User data

OSI Network Layers

© 2006 Uwe R. Zimmer, The Australian National University Page 403 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Network protocols & standards

7: Application Layer

• Service: Network access to application programs

• Functions: application specific

• Examples: APIs for mail, ftp, ssh, scp, …

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

Network

Data link

Physical

User data User data

OSI Network Layers

© 2006 Uwe R. Zimmer, The Australian National University Page 404 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Network protocols & standards

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

IP

Network

Physical

User data User data

OSI

Transport

Application

TCP/IP OSI

© 2006 Uwe R. Zimmer, The Australian National University Page 405 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Network protocols & standards

Application

Presentation

Session

Transport

Network

Data link

Physical

AppleTalk Filing Protocol (AFP)

Routing Table
Maintenance Prot.

IP

Network

Physical

OSI

Transport

Application

TCP/IP AppleTalk

AT Update Based
Routing Protocol

AT Transaction
Protocol

Name
Binding Prot.

AT Echo
Protocol

AT Data Stream
Protocol

AT Session
Protocol

Zone Info
Protocol

Printer Access
Protocol

Datagram Delivery Protocol (DDP)

AppleTalk Address Resolution Protocol (AARP)

EtherTalk Link
Access Protocol

LocalTalk Link
Access Protocol

TokenTalk Link
Access Protocol

FDDITalk Link
Access Protocol

IEEE 802.3 LocalTalk Token Ring
IEEE 802.5

FDDI

© 2006 Uwe R. Zimmer, The Australian National University Page 406 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Network protocols & standards

Application

Presentation

Session

Transport

Network

Data link

Physical

IP

Network

Physical

OSI AppleTalk over IP

EtherTalk Link
Access Protocol

LocalTalk Link
Access Protocol

TokenTalk Link
Access Protocol

FDDITalk Link
Access Protocol

IEEE 802.3 LocalTalk Token Ring
IEEE 802.5

FDDI

AppleTalk Filing Protocol (AFP)

Routing Table
Maintenance Prot.

AT Update Based Routing
Protocol

AT Transaction
Protocol

Name Binding
Protocol

AT Echo
Protocol

AT Data Stream Protocol AT Session Protocol Zone Info Protocol Printer Access Protocol

Datagram Delivery Protocol (DDP)

AppleTalk Address Resolution Protocol (AARP)

© 2006 Uwe R. Zimmer, The Australian National University Page 407 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Network protocols & standards

Ethernet / IEEE 802.3

• local area network (LAN) developed by Xerox in the 70’s

• 10 Mbps specification 1.0 by DEC, Intel, & Xerox in 1980

• specified by the IEEE 802.3 standard in 1983

• 10Mbps - 1 Gbps (10Gbps in preparation)

• approx. 85% of current LAN lines worldwide

☞ Carrier Sense Multiple Access with Collision Detection (CSMA/CD)

© 2006 Uwe R. Zimmer, The Australian National University Page 408 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Network protocols & standards

Ethernet
OSI reference model classification

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

IP

Network

Physical

User data User data

OSI

Transport

Application

TCP/IP OSI

OSI
reference

model

Application

Presentation

Session

Transport

Network

Data link

Physical

IEEE 802.3
reference

model

MAC-client

Media Access (MAC)

Physical (PHY)

Upper-layer
protocols

IEEE 802-specific

IEEE 802.3-specific

Media-specific

© 2006 Uwe R. Zimmer, The Australian National University Page 409 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Network protocols & standards

Ethernet
MAC & PHY layer

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

IP

Network

Physical

User data User data

OSI

Transport

Application

TCP/IP OSI

802.3 MAC

Physical medium-
independent layer

MAC Client

MII

Physical medium-
dependent layers

MDI

802.3 MAC

Physical medium-
independent layer

MAC Client

MII

Physical medium-
dependent layers

MDI

PHY

Link media,
signal encoding, and

transmission rate

Transmission rate

MII = Medium-independent interface
MDI = Medium-dependent interface - the link connector

Link

© 2006 Uwe R. Zimmer, The Australian National University Page 410 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Network protocols & standards

Token Ring / IEEE 802.5

• Developed by IBM in the 70’s

• IEEE 802.5 standard is modelled after the IBM Token Ring architecture
(specifications are slightly different, but basically compatible)

• IBM Token Ring requests are star topology as well as twisted pair cables,
while IEEE 802.5 is unspecified in topology and medium

☞ Unlike CSMA/CD, the token ring is deterministic
(with respect to its timing behaviour)

© 2006 Uwe R. Zimmer, The Australian National University Page 411 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Network protocols & standards

Token Ring / IEEE 802.5
Topology (IBM)

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

IP

Network

Physical

User data User data

OSI

Transport

Application

TCP/IP OSI

MSAU

Ring
in 1 2 3 4 5 6 7 8

Ring
out

Stations

MSAU

Ring
in 1 2 3 4 5 6 7 8

Ring
out

Stations

MSAU

Ring
in 1 2 3 4 5 6 7 8

Ring
out

Stations

MSAU

Ring
in 1 2 3 4 5 6 7 8

Ring
out

Stations

Lobe
cables

Patch
cables

© 2006 Uwe R. Zimmer, The Australian National University Page 412 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Network protocols & standards

Fiber Distributed Data Interface (FDDI)

• Designed in the 80’s as a standard for ‘backbone networks’

• American National Standards Institute (ANSI) X3T9.5 standard

• 100Mbps token passing, dual ring local area network
using fiber optical cable (or copper in case of CDDI)

• Second ring is idle in normal operations

☞ Deterministic and Failure resistant

© 2006 Uwe R. Zimmer, The Australian National University Page 413 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Network protocols & standards

FDDI / ANSI X3T9.5
OSI reference model classification

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

IP

Network

Physical

User data User data

OSI

Transport

Application

TCP/IP OSI

Logical link control

Media access control

Physical layer protocol

Physical layer medium

Station
management

FDDI

standards

ct
84

08
03

© 2006 Uwe R. Zimmer, The Australian National University Page 414 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Network protocols & standards

FDDI / ANSI X3T9.5
Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

IP

Network

Physical

User data User data

OSI

Transport

Application

TCP/IP OSI

Station 4

Station 3

Station 2

Station 1

Ring wrap

B

A

MAC

B

A

MAC

BA

B A

MAC

MAC

Ring wrapFailed wiring

Cable failure tolerance

© 2006 Uwe R. Zimmer, The Australian National University Page 415 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Network protocols & standards

FDDI / ANSI X3T9.5
Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

IP

Network

Physical

User data User data

OSI

Transport

Application

TCP/IP OSI

Station 4

Station 3

Station 2

Station 1

BA

B

A

B

A

Optical bypass switch
“normal configuration”

A

B

Station 4

Station 3

Station 2

BA

B

A

B

A

Failed station

Station 1

Optical bypass switch
“bypassed configuration”

Ring does not wrap

AB

Station failure tolerance

© 2006 Uwe R. Zimmer, The Australian National University Page 416 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

☞ finally: distribution!

What are potential benefits?

• Fits an existing physical distribution (e-mail system, devices in a large aeroplane, …).

• Possible high performance due to potentially high degree of parallel computing.

• Possible high reliability due to redundancy of hardware and software.

• Possible scalability.

• Integration of a large number of heterogeneous nodes/devices tailored to specific needs.

© 2006 Uwe R. Zimmer, The Australian National University Page 417 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

What can be distributed?

• State ☞ common methods on distributed databases, e-mail

• Function ☞ distributed methods on central data

• State & Function ☞ client/server clusters

• none of those ☞ pure replication, redundancy

© 2006 Uwe R. Zimmer, The Australian National University Page 418 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Common design criteria

☞ Achieve decoupling / high degree of local autonomy

☞ Cooperation rather than central control

☞ Consider reliability

☞ Consider scalability

☞ Consider performance

© 2006 Uwe R. Zimmer, The Australian National University Page 419 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Common phenomena in distributed systems

1.Unpredictable delays (communication)

• Are we done yet?

2.Missing or imprecise time-base

• Was there a causal relation?

• Was there a temporal relation?

3.Partial failures

• Likelihood of individual failures increases

• Likelihood of complete failure decreases (in case of a good design)

© 2006 Uwe R. Zimmer, The Australian National University Page 420 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Time in distributed systems

Two principle alternative strategies:

☞ Synchronize clocks

☞ Create a virtual time

© 2006 Uwe R. Zimmer, The Australian National University Page 421 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

‘Real-time’ clocks in computer systems
are:

• discrete, i.e. time is not ‘dense’, there is a minimal granularity

• drift affected

1

1

t: ‘real’ time

C: measured time
ideal clock

clock affected by max drift δ

1 δ+() 1–
C t2() C t1()–

t2 t1–
---------------------------------- 1 δ+()≥ ≥

δ
δ

© 2006 Uwe R. Zimmer, The Australian National University Page 422 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Synchronize local, drift affected clocks (both ways)

sync.

t: ‘real’ time

clock affected by max drift δ

C: measured time

sync.

central clock

sync.

© 2006 Uwe R. Zimmer, The Australian National University Page 423 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Synchronize local, drift affected clocks (forward only)

sync.

t: ‘real’ time

clock affected by max drift δ

C: measured time

sync.

central clock

sync.

© 2006 Uwe R. Zimmer, The Australian National University Page 424 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Distributed critical regions with synchronized clocks
1. Create and attach current time-stamp

2. Add to local (ordered by time)
Send to all processes

3. Delay (being the time it takes for a message to reach all network nodes)

4. Add all received s in local (ordered by time)

5. While do

5-a for all received release messages delete corresponding in local

6. Enter and leave critical region

7. Send -message to all processes

OwnRequest

OwnRequest RequestQueue
OwnRequest

2L L

Request RequestQueue

Top RequestQueue() OwnRequest≠

Request RequestQueue

Release

© 2006 Uwe R. Zimmer, The Australian National University Page 425 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Distributed critical regions with synchronized clocks

Analysis

• No deadlock, no individual starvation, no livelock

• Minimal request delay:

• Minimal release delay:

• Communications requirements per requesting process: messages
(can be significantly improved by employing broadcast mechanisms)

Assumptions:

• is known and constant

• no messages are lost

2L

L

2 N 1–()

L

© 2006 Uwe R. Zimmer, The Australian National University Page 426 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Virtual (logical) time [Lamport 1978]

•

with being a causal relation between and
and , the (virtual) times associated with and

• holds when

• happens earlier than in the same sequential process
• denotes the event of sending of message , while denotes the receiving event of

(in different processes)
• there is a transitive causal relation:

•

a b→ C a() C b()<⇒
a b→ a b

C a() C b() a b

a b→
a b
a m b m

a e1 … en b→ → → →

a b|| a b→()¬ b a→()¬∧⇒

© 2006 Uwe R. Zimmer, The Australian National University Page 427 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Virtual (logical) time

Implications:

 a b→ C a() C b()<⇒

C a() C b()< a b→() a b||()∨⇒

C a() C b()= a b||⇒

© 2006 Uwe R. Zimmer, The Australian National University Page 428 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Virtual (logical) time
• time is no longer global and is attached to observable causal relations

• all events in between communications are considered concurrent in different processes

t

21

22 23

24

24

25 26

27

27

22 23

28 29

24

28

25

30

30 31

31

27

22

21

P3

P1

P2

30292321

26 33

32

© 2006 Uwe R. Zimmer, The Australian National University Page 429 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Implementing a virtual (logical) time

1. :

2. :

2-a local events:

2-b send operations: ; Send

2-c receive operations: Receive ;

Pi∀ Ci 0=

Pi∀

 ∀ Ci Ci 1+=

 ∀ m Ci Ci 1+= m Ci,()

 ∀ m m Cm,() Ci max Ci Cm,() 1+=

© 2006 Uwe R. Zimmer, The Australian National University Page 430 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Distributed critical regions with logical clocks
Concurrently:

• -message received:
☞ Add in local (ordered by time)
☞ if pending reply with else reply with

• -message received ☞ if delete corresponding in local

• if access to critical region required:

1. Create and attach current time-stamp

2. Add to local (ordered by time)
Send to all processes

3. Wait for & no outstanding replies

4. Enter and leave critical region

5. Send -message to all processes

Request
Request RequestQueue

OwnRequest OwnRequest Ack

Release Request RequestQueue

OwnRequest

OwnRequest RequestQueue
OwnRequest

Top RequestQueue() OwnRequest=

Release

© 2006 Uwe R. Zimmer, The Australian National University Page 431 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Distributed critical regions with logical clocks

Analysis

• No deadlock, no individual starvation, no livelock

• Minimal request delay: request messages, reply messages

• Minimal release delay: release messages

• Total communications requirements per requesting process: messages
(can be significantly improved by employing broadcast mechanisms)

Assumption:

• no messages are lost

No assumptions about:

• runtime of messages over the communication system

N 1– N 1–

N 1–

3 N 1–()

© 2006 Uwe R. Zimmer, The Australian National University Page 432 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Distributed critical regions with a token ring structure
1. Organize all processes in a ring (physically or logically)

2. Pass a ‘token’-message along the ring

3. On receiving the token:

3-a If the local process wants to enter a critical section it does so now (while storing the token)

3-b The token is passed along

☞ What happens if the token is lost?

(there are simple recovery algorithms similar to the ‘election’ scheme following)

© 2006 Uwe R. Zimmer, The Australian National University Page 433 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Distributed critical regions with a central coordinator

• a global, static, central coordinator invalidates the concept of a distributed system,
but enables very simple mutual exclusion algorithms, so …

… we pronounce one processes as the central coordinator, but
… if this one fails, the rest of the processes are able to come up with a new coordinator.

☞ This is done by a distributed ‘election’ algorithm, i.e. the Bully-algorithm [Garcia-Molina 1982]

© 2006 Uwe R. Zimmer, The Australian National University Page 434 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Electing a central coordinator (the Bully algorithm)

Any process which notices that the central coordinator is done, performs:

1. Sending an Election-message to all processes with higher process numbers

2. wait for response messages

2-a If no one responds after a pre-defined amount of time:
 declares itself the new coordinator and sends out a Coordinator-message to all.

2-b If any process responds, the election activity for is over
and waits for a Coordinator-message

All processes :

If receives a Election-message from a process with a lower process number,
it responds to the originating process and starts an election process itself (if not running already).

P

P

P

P
P

Pi
Pi

© 2006 Uwe R. Zimmer, The Australian National University Page 435 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Distributed states
• collect all local states at a given time:

t

P3

P1

P2

© 2006 Uwe R. Zimmer, The Australian National University Page 436 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Distributed states
• collect all local states at a given time:

t

P3

P1

P2

Po

© 2006 Uwe R. Zimmer, The Australian National University Page 437 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Distributed states
• collect all local states at a given time:

t

P3

P1

P2

Po

© 2006 Uwe R. Zimmer, The Australian National University Page 438 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Distributed states
• collect all local states at a given time (snapshot):

☞ collecting all local states at an absolute, global point in time is impossible

☞ make sure that the observed distributed state (snapshot) is at least consistent

t

P3

P1

P2

© 2006 Uwe R. Zimmer, The Australian National University Page 439 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Distributed states

Consistent global state (snapshot):

Make sure that all events can be uniquely divided in:

• before the snapshot (belonging to the past):

• after the snapshot (belonging to the future):

P
e2 P∈() e1 e2→()∧ e1 P∈⇒

F
e1 F∈() e1 e2→()∧ e2 F∈⇒

© 2006 Uwe R. Zimmer, The Australian National University Page 440 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Distributed states
• check for consistency: straighten out the snapshot cut

t

P3

P1

P2

© 2006 Uwe R. Zimmer, The Australian National University Page 441 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Distributed states
• check for consistency: straighten out the snapshot cut

t

P3

P1

P2

© 2006 Uwe R. Zimmer, The Australian National University Page 442 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Distributed states
• check for consistency: straighten out the snapshot cut

• … or: the future influences the past

☞ inconsistent snapshot

t

P3

P1

P2

P F

e1 F∈() e1 e2→()∧ e2 P∈⇒

© 2006 Uwe R. Zimmer, The Australian National University Page 443 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Snapshot algorithm

• Observer-process (any process) creates a snapshot token and saves its local state

• sends to all other processes.

• which receive the (as a token-message, or as part of another message):

• save local state and send to
• attach to all further messages, which are to be sent to other processes
• save and ignore all further incoming ‘s

• which previously received and receive a message without :

• forward to (this message belongs to the snapshot)

Po ts so

Po ts

P∀ i ts

si si Po
ts

ts ts

P∀ i ts m ts

m Po

© 2006 Uwe R. Zimmer, The Australian National University Page 444 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Distributed states
• apply snapshot algorithm:

• send out snapshot token to all

t

P3

P1

P2

Po

Po

© 2006 Uwe R. Zimmer, The Australian National University Page 445 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Distributed states
• apply snapshot algorithm:

• responds with its local state

t

P3

P1

P2

Po

P2

© 2006 Uwe R. Zimmer, The Australian National University Page 446 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Distributed states
• apply snapshot algorithm:

• forwards an untagged message

t

P3

P1

P2

Po

P2

© 2006 Uwe R. Zimmer, The Australian National University Page 447 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Distributed states
• apply snapshot algorithm:

• responds with its local state

• responds with its local state (due to a tagged message)

t

P3

P1

P2

Po

P1

P3

© 2006 Uwe R. Zimmer, The Australian National University Page 448 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Distributed states
• apply snapshot algorithm:

• ignores the snapshot token
(token was previously received as part of a message, local state is already reported)

t

P3

P1

P2

Po

P3

© 2006 Uwe R. Zimmer, The Australian National University Page 449 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Distributed states
• apply snapshot algorithm:

• forwards an untagged message

t

P3

P1

P2

Po

P2

© 2006 Uwe R. Zimmer, The Australian National University Page 450 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Distributed states
• apply snapshot algorithm:

• ignores a tagged message (token was previously received, local state is already reported)

t

P3

P1

P2

Po

P1

© 2006 Uwe R. Zimmer, The Australian National University Page 451 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Distributed states
• apply snapshot algorithm:

☞ the effective snapshot of the system
… which is known to the observer after it received all reports

t

P3

P1

P2

Po

Po

© 2006 Uwe R. Zimmer, The Australian National University Page 452 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Snapshot algorithm

Termination?

either

• make assumptions about the delays in the system

or

• count the sent and received messages for each process (include this in the local state)
and keep track of outstanding messages in the observer process

or …

© 2006 Uwe R. Zimmer, The Australian National University Page 453 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Consistent distributed states

Why do we need that?

• find deadlocks

• find termination / completion conditions

• any other safety of liveness property

• collect a consistent system state for further processing (distributed databases)

© 2006 Uwe R. Zimmer, The Australian National University Page 454 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

A distributed server

Client

Server Server

Server

Server

ServerServer

Server

Server

Ring of servers

© 2006 Uwe R. Zimmer, The Australian National University Page 455 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

A distributed server

Client

Server Server

Server

Server

ServerServer

Server

Server

SendToGroup (Job)

Ring of servers

© 2006 Uwe R. Zimmer, The Australian National University Page 456 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

A distributed server

Client

Server Server

Server

Server

ServerServer

Server

Server

Contention
messages

Ring of servers

Contention
messages

© 2006 Uwe R. Zimmer, The Australian National University Page 457 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

A distributed server

Client

Server

Server

Server

ServerServer

Server

Server

Ring of servers

JobCompleted (Results) Server

© 2006 Uwe R. Zimmer, The Australian National University Page 458 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

A distributed server
with GroupCommunication; use GroupCommunication;

task type Client is

end Client;

task body Client is

begin

SendToGroup (PrintServerGroup, ClientId, PrintJob);

end Client;

© 2006 Uwe R. Zimmer, The Australian National University Page 459 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

A distributed server
with Ada.Task_Identification; use Ada.Task_Identification;

task type PrintServer is

entry SendToServer (PrintJob : in Job_Type;
JobDone : out Boolean);

entry Contention (ServerId : in Task_Id;
PrintJob : in Job_Type);

end PrintServer;

© 2006 Uwe R. Zimmer, The Australian National University Page 460 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

A distributed server
task body PrintServer is
begin
loop
select

accept SendToServer (PrintJob : in Job_Type;
JobDone : out Boolean) do

if not PrintJob in TurnedDownJobs then

if not_too_busy then
AppliedForJobs := AppliedForJobs + PrintJob;
NextServerOnRing.Contention (Current_Task, PrintJob);
Requeue InternalPrintServer.PrintJobQueue;

else
TurnedDownJobs := TurnedDownJobs + PrintJob;

end if;
end if;

end SendToServer;

© 2006 Uwe R. Zimmer, The Australian National University Page 461 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

…
or
accept Contention (ServerId : in Task_Id;

PrintJob : in Job_Type) do
if PrintJob in AppliedForJobs then
if ServerId = Current_Task then
InternalPrintServer.StartPrint (PrintJob);

elsif ServerID > Current_Task then
InternalPrintServer.CancelPrint (PrintJob);
NextServerOnRing.Contention (ServerId, PrintJob);

else
null; -- removing the contention message from ring

end if;
else
TurnedDownJobs := TurnedDownJobs + PrintJob;
NextServerOnRing.Contention (ServerId, PrintJob);

end if;
end Contention;

or
terminate;

end select;
end loop;

end PrintServer;

© 2006 Uwe R. Zimmer, The Australian National University Page 462 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

How to construct predictable client-server systems
beyond a single remote procedure call / rendezvous?

☞ Transactions:
• Atomicity: All or none of the sub-operations are performed. Atomicity helps achieve crash

resilience. If a crash occurs, then it’s possible to roll back the system to the state before
the transaction was invoked.

• Consistency: Transforms the system from one consistent state to another.

• Isolation: Results (including partial results) are not revealed unless and until the transaction
commits. If the operation accesses a shared data object, invocation does not interfere with
other operations on the same object.

• Durability: After a commit, results are guaranteed to persist, even after a subsequent system
failure.

☞ known as the ‘ACID’-properties

© 2006 Uwe R. Zimmer, The Australian National University Page 463 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Transactions
• Atomicity: All or none of the sub-operations are performed. Atomicity helps achieve crash

resilience. If a crash occurs, then it’s possible to roll back the system to the state before
the transaction was invoked.

• Consistency: Transforms the system from one consistent state to another.

• Isolation: Results (including partial results) are not revealed unless and until the transaction
commits. If the operation accesses a shared data object, invocation does not interfere with
other operations on the same object.

• Durability: After a commit, results are guaranteed to persist, even after a subsequent system
failure.

☞ how to achieve consistency and isolation in a concurrent / distributed system?

© 2006 Uwe R. Zimmer, The Australian National University Page 464 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Transactions
• Atomicity: All or none of the sub-operations are performed. Atomicity helps achieve crash

resilience. If a crash occurs, then it’s possible to roll back the system to the state before
the transaction was invoked.

• Consistency: Transforms the system from one consistent state to another.

• Isolation: Results (including partial results) are not revealed unless and until the transaction
commits. If the operation accesses a shared data object, invocation does not interfere with
other operations on the same object.

• Durability: After a commit, results are guaranteed to persist, even after a subsequent system
failure.

☞ how to achieve consistency and isolation in a concurrent / distributed system?

• if the transactions are not completely side-effect free,
they cannot operate on the same server data-structures concurrently? …

© 2006 Uwe R. Zimmer, The Australian National University Page 465 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Transactions
• Atomicity: All or none of the sub-operations are performed. Atomicity helps achieve crash

resilience. If a crash occurs, then it’s possible to roll back the system to the state before
the transaction was invoked.

• Consistency: Transforms the system from one consistent state to another.

• Isolation: Results (including partial results) are not revealed unless and until the transaction
commits. If the operation accesses a shared data object, invocation does not interfere with
other operations on the same object.

• Durability: After a commit, results are guaranteed to persist, even after a subsequent system
failure.

☞ how to achieve consistency and isolation in a concurrent / distributed system?

• if the transactions are not completely side-effect free,
they cannot operate on the same server data-structures concurrently? …

… maybe we can implement the appearance of isolation and the full effect of consistency?

© 2006 Uwe R. Zimmer, The Australian National University Page 466 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

A closer look at transactions
• Transactions consist of a sequence of individual operations.

• If two operations out of two transactions can be performed in any order
with the same final effect, they are commutative and not critical for our purposes.

• Some of the operations out of transactions have side-effects ☞ those are the critical operations.

• Any sequential execution of multiple transactions
fulfils the ACID-properties, by definition of a single transaction.

• Some concurrent executions (interleavings) of multiple transactions
might fulfil the ACID-properties.

☞ If a specific interleaving can be shown to be equivalent to a specific sequential execution
of the involved transactions then this specific interleaving is called ‘serializable’.

☞ Construct an interleaving which ensures that no transaction ever encounters
an inconsistent state (ensure the appearance of isolation).

© 2006 Uwe R. Zimmer, The Australian National University Page 467 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Achieving serializability

• If two side-effecting operations out of two different transactions (affecting the same object)
cannot be executed in any order with the same final effect
then those are conflicting pairs of operations.

☞ For serializability of two transactions it is necessary and sufficient for the
order of their invocations of all conflicting pairs of operations to be the
same for all the objects which are invoked by both transactions.

Order of operations needs to be determined:

☞ distributed time-stamps are required, e.g. Lamport clocks

© 2006 Uwe R. Zimmer, The Australian National University Page 468 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Serialization graphs
☞ For serializability of two transactions it is necessary and sufficient for the

order of their invocations of all conflicting pairs of operations to be the
same for all the objects which are invoked by both transactions.

☞ Above order gives also an order dependency between the transactions as a whole.

• Serialization graph: directed graph; vertices represent transactions ;
edges represent that an observer witnessed that order dependency.

A multiple transactions interleaving is serializable
its serialization graph is acyclic

i Ti
Ti Tj→

 ⇔

© 2006 Uwe R. Zimmer, The Australian National University Page 469 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Transaction schedulers

Three major designs:

• Locking methods:
Impose strict mutual exclusion on all critical sections.

• Time-stamp ordering:
Note relative starting times and keep order dependencies consistent.

• “Optimistic” methods:
Go ahead until a conflict is observed - then roll back.

© 2006 Uwe R. Zimmer, The Australian National University Page 470 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Transaction schedulers – Locking methods
Locking methods include the possibility of deadlocks ☞ careful from here on out …

• Complete resource allocation before the start and release at the end of every transaction:
☞ this will impose a strict sequential execution of all critical transactions.

• (Strict) two-phase locking:
Each transaction follows the following two phase pattern during its operation:

• Growing phase: locks can be acquired, but not released
• Shrinking phase: locks can be released, but not acquired (two phase locking) or

locks are released on commit (strict two phase locking).

☞ possible deadlocks
☞ serializable interleavings
☞ strict isolation (in case of strict two-phase locking)

• Semantic locking: Allow for separate read-only and write-locks
☞ higher level of concurrency (see also: use of functions in protected objects)

© 2006 Uwe R. Zimmer, The Australian National University Page 471 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Transaction schedulers – Time stamp ordering
• Put a unique time-stamp (any global order criterion) on every transaction upon start.

Each involved object can inspect the time-stamps of all requesting transactions.

• Case 1:
A transaction with a time-stamp later than all currently active transactions applies:
☞ the request is accepted and the transaction can go ahead

• Case 2:
A transaction with a time-stamp earlier than all currently active transactions applies:
☞ the request is not accepted and the applying transaction is to be aborted.

☞ no isolation ☞ cascading aborts possible.

• Alternative case 1 (strict time-stamp ordering):
☞ the request is delayed until the currently active earlier transaction has committed

☞ simple implementation, high degree of concurrency
– also in a distributed environment, as long as a global event order (time) can be supplied.

© 2006 Uwe R. Zimmer, The Australian National University Page 472 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Transaction schedulers – Optimistic concurrency control

Premise:
If conflict is unlikely the overhead to ensure a serializable interleaving might not be justified

Idea:

• get a local copy (shadow copy) of the involved objects

• perform a subset of the required transactions locally

• check for the current state of the object again and see whether the results of the local opera-
tions can be embedded without violating consistency

• depending on the previous check:
either delete all local results or write them back to the actual object

© 2006 Uwe R. Zimmer, The Australian National University Page 473 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Transaction schedulers – Optimistic concurrency control
Three phases

1. Read & execute:
generate a shadow copy of all involved objects and perform all required operations there.

2. Validate:
after local commit, check all occurred interleavings for serializability

3. Update or abort:
IF serializability could be ensured in step 2 then all results of involved transactions (one transac-
tion at a time) are written to all involved objects (in dependency order of the transactions).
Otherwise destroy shadow copies and possibly start over with the failed transactions.

☞ Open issue: how to gain a consistent set of shadow copies in phase one
and how to update all involved objects consistently (atomically) in phase three?

© 2006 Uwe R. Zimmer, The Australian National University Page 474 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Transaction schedulers – Optimistic concurrency control

Premise:
If conflict is unlikely the overhead to ensure a serializable interleaving might not be justified

Results:

☞ possibly many additional copies

☞ deadlock free

☞ maximum concurrency

☞ with more overlapping transactions this scheduler breaks down rapidly
☞ starvation & live-locks

© 2006 Uwe R. Zimmer, The Australian National University Page 475 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Distributed transaction schedulers
The three major designs again:

• Locking methods:
Impose strict mutual exclusion on all critical sections.

• Time-stamp ordering:
Note relative starting times and keep order dependencies consistent.

• “Optimistic” methods:
Go ahead until a conflict is observed - then roll back.

☞ Commit or abort operations are required in many places above

How to implement those in a distributed environment?

© 2006 Uwe R. Zimmer, The Australian National University Page 476 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Two phase commit protocol

Start-up (initialization) phase

Client

Server Server

Server

Server

ServerServer

Server

Server

(Transaction)

Ring of servers

Data object

© 2006 Uwe R. Zimmer, The Australian National University Page 477 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Two phase commit protocol

Start-up (initialization) phase

Client

Server Server

Server

Server

ServerServer

Server

Server

SendToGroup (Transaction)

© 2006 Uwe R. Zimmer, The Australian National University Page 478 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Two phase commit protocol

Start-up (initialization) phase

Client

Server Server

Server

Server

ServerServer

Server

Server
Determine coordinator

© 2006 Uwe R. Zimmer, The Australian National University Page 479 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Two phase commit protocol

Start-up (initialization) phase

Client

Coord. Server

Server

Server

ServerServer

Server

Server
Determine coordinator

© 2006 Uwe R. Zimmer, The Australian National University Page 480 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Two phase commit protocol

Start-up (initialization) phase

Client

Coord. Server

Server

Server

ServerServer

Server

Server
Setup & start operating

© 2006 Uwe R. Zimmer, The Australian National University Page 481 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Two phase commit protocol

Start-up (initialization) phase

Client

Coord. Server

Server

Server

ServerServer

Server

Server
Setup & start operating

Shadow copy

© 2006 Uwe R. Zimmer, The Australian National University Page 482 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Two phase commit protocol

Phase 1: Determine result state

Client

Coord. Server

Server

Server

ServerServer

Server

Server
Coordinator requests

Shadow copy

& assembles votes
(commit or abort)

© 2006 Uwe R. Zimmer, The Australian National University Page 483 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Two phase commit protocol

Phase 1: Determine result state

Client

Coord. Server

Server

Server

ServerServer

Server

Server
Coordinator requests

Shadow copy

& assembles votes
(commit or abort)

II mm pp oo rr tt aa nn tt ::

‘‘ CC oo mm mm ii tt ’’ mm ee aa nn ss jj uu ss tt tt hh aa tt

((ee vv ee nn ii nn cc aa ss ee oo ff aa cc rr aa ss hh))

© 2006 Uwe R. Zimmer, The Australian National University Page 484 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Two phase commit protocol

Phase 2: Implement results

Client

Coord. Server

Server

Server

ServerServer

Server

Server
All commit:

Shadow copy

Coordinator tells everybody
to actually commit

© 2006 Uwe R. Zimmer, The Australian National University Page 485 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Two phase commit protocol

Phase 2: Implement results

Client

Coord. Server

Server

Server

ServerServer

Server

Server
All commit:

Shadow copies are destroyed

© 2006 Uwe R. Zimmer, The Australian National University Page 486 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Two phase commit protocol

Phase 2: Implement results

Client

Coord. Server

Server

Server

ServerServer

Server

Server
All commit:

Everybody responds with
‘done’

© 2006 Uwe R. Zimmer, The Australian National University Page 487 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Two phase commit protocol

or phase 2: global roll back

Client

Coord. Server

Server

Server

ServerServer

Server

Server
One abort:

Shadow copy

Coordinator tells everybody
to abort

© 2006 Uwe R. Zimmer, The Australian National University Page 488 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Two phase commit protocol

or phase 2: global roll back

Client

Coord. Server

Server

Server

ServerServer

Server

Server
One abort:

Shadow copies are destroyed
(without update)

© 2006 Uwe R. Zimmer, The Australian National University Page 489 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Two phase commit protocol

Phase 2: Report result of distributed transaction

Client

Coord. Server

Server

Server

ServerServer

Server

Server
Commit or abort:

Coordinator reports
to client

© 2006 Uwe R. Zimmer, The Australian National University Page 490 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Distributed transactions
Evaluating the three major design methods in a distributed environment:

• Locking methods:
Large overheads; distributed deadlock detection required.

• Time-stamp ordering:
If time-stamps can be provided: Recommends itself for distributed applications,

since decisions are taken locally and communication overhead is relatively small.

• “Optimistic” methods:
Maximises concurrency, but also data replication; chances of aborts and roll-backs are higher.

☞ side-aspect data replication: large body of literature on this topic
(see: distributed data-bases / operating systems / shared memory, cache management, …)

© 2006 Uwe R. Zimmer, The Australian National University Page 491 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Redundancy (replicated servers)
Premise:

A crashing server computer should not compromise the functionality of the system
(full fault tolerance)

• k computers inside the server cluster might crash without losing functionality.

☞ Replication: at least k+1 servers.

• the server cluster can reorganize any time (and specifically after the loss of a computer).

☞ Hot stand-by components, dynamical server group management.

• the server is described fully by the current state and the sequence of messages received.

☞ State machines: we have to implement consistent state adjustments (re-organization)
and consistent message passing (order needs to be preserved).

[Schneider90]

© 2006 Uwe R. Zimmer, The Australian National University Page 492 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Redundancy (replicated servers)

Message processing stages in each server:

received deliverable

processed
Message received locally Message processed locally

Message received by
all active servers

© 2006 Uwe R. Zimmer, The Australian National University Page 493 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Fault tolerance (replicated servers)

Start-up (initialization) phase

Client

Server Server

Server

Server

ServerServer

Server

Server

(Job)

Ring of identical servers

© 2006 Uwe R. Zimmer, The Australian National University Page 494 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Fault tolerance (replicated servers)

Start-up (initialization) phase

Client

Server Server

Server

Server

ServerServer

Server

Server
Determine coordinator

© 2006 Uwe R. Zimmer, The Australian National University Page 495 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Fault tolerance (replicated servers)

Start-up (initialization) phase

Client

Coord. Server

Server

Server

ServerServer

Server

Server
Coordinator determined

© 2006 Uwe R. Zimmer, The Australian National University Page 496 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Fault tolerance (replicated servers)

Receive job-message at coordinator

Client

Coord. Server

Server

Server

ServerServer

Server

Server
Coordinator receives job

SendToCoordinator (Job)

© 2006 Uwe R. Zimmer, The Australian National University Page 497 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Fault tolerance (replicated servers)

Distribute job-message

Client

Coord. Server

Server

Server

ServerServer

Server

Server
Coordinator distributes

job both ways

© 2006 Uwe R. Zimmer, The Australian National University Page 498 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Fault tolerance (replicated servers)

Distribute job-message

Client

Coord. Server

Server

Server

ServerServer

Server

Server
All server received the job
(but nobody knows that)

© 2006 Uwe R. Zimmer, The Australian National University Page 499 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Fault tolerance (replicated servers)

Distribute job-message

Client

Coord. Server

Server

Server

ServerServer

Server

Server
First server detects
two job-messages

© 2006 Uwe R. Zimmer, The Australian National University Page 500 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Fault tolerance (replicated servers)

Distribute job-message

Client

Coord. Server

Server

Server

ServerServer

Server

Server
All servers detect

both job messages

© 2006 Uwe R. Zimmer, The Australian National University Page 501 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Fault tolerance (replicated servers)

servers decide whether this message is known to everybody else ☞ process job

Client

Coord. Server

Server

Server

ServerServer

Server

Server
Coordinator distributes

job both ways

each server

2 received messages means:
“everybody else must have seen this too

 received 0, 1, or 2 messages:

☞ process job“

© 2006 Uwe R. Zimmer, The Australian National University Page 502 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Fault tolerance (replicated servers)

Coordinator processes job-message

Client

Coord. Server

Server

Server

ServerServer

Server

Server
Coordinator receives 2 messages:

process job

© 2006 Uwe R. Zimmer, The Australian National University Page 503 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Fault tolerance (replicated servers)

All servers are in the same state again - Coordinator delivers response

Client

Coord. Server

Server

Server

ServerServer

Server

Server
Coordinator responds

to client

© 2006 Uwe R. Zimmer, The Australian National University Page 504 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Distributed Systems

Fault tolerance (replicated servers)

servers crash!, new servers joining, old servers leaving …

☞ somebody (either a server detecting a time-out, or an explicitly joining or leaving server)
sends a ‘FormNewGroup’ signal to all current servers
(this message passing mechanism is assumed to be part of the distributed operating system)

1. Wait for local job processing to complete or time-out

2. Store local consistent state

3. Re-organize server ring, send local state around the ring

4. If a state with is received ☞ :=

5. Elect coordinator

6. Enter ‘Coordinator-’ or ‘Replicate-mode’

Si

Sj j i> Si Sj

© 2006 Uwe R. Zimmer, The Australian National University Page 505 of 516 (Chapter 9: to 505)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Summary

Distributes Systems
• Networks

• OSI, topologies, standards

• Time

• Synchronized clocks, virtual (logical) times
• Distributed critical regions (synchronized, logical, token ring)

• Distributed systems

• Elections
• Distributed states, consistent snapshots
• Distributed servers (replicates, distributed processing, distributed commits)
• Transactions (ACID properties, serializable interleavings, transaction schedulers)

Summary
Uwe R. Zimmer

The Australian National University

516

© 2006 Uwe R. Zimmer, The Australian National University Page 507 of 516 (Chapter 10: to 516)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Summary

Topics in this course

1.Concurrency [3]

2.Mutual exclusion [3]

3.Condition
synchronization [4]

4.Non-determinism in
concurrent systems [2]

5.Scheduling [2]

6.Safety and liveness [3]

7.Architectures
for CDS [3]

8.Distributed systems [8]

© 2006 Uwe R. Zimmer, The Australian National University Page 508 of 516 (Chapter 10: to 516)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Summary

Concurrency – The Basic Concepts
• Forms of concurrency

• Models and terminology

• Abstractions and perspectives: computer science, physics & engineering
• Observations: non-determinism, atomicity, interaction, interleaving
• Correctness in concurrent systems

• Processes and threads

• Basic concepts and notions
• Process states

• First examples of concurrent programming languages:

• Explicit concurrency: Ada95
• Implicit concurrency: functional programming – Lisp, Haskell, Caml, Miranda

© 2006 Uwe R. Zimmer, The Australian National University Page 509 of 516 (Chapter 10: to 516)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Summary

Mutual Exclusion
• Definition of mutual exclusion

• Atomic load and atomic store operations

• … some classical errors
• Decker’s algorithm, Peterson’s algorithm
• Bakery algorithm

• Realistic hardware support

• Atomic test-and-set, Atomic exchanges, Memory cell reservations

• Semaphores

• Basic semaphore definition
• Operating systems style semaphores

© 2006 Uwe R. Zimmer, The Australian National University Page 510 of 516 (Chapter 10: to 516)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Summary

Synchronization

• Shared memory based synchronization

• Flags, condition variables, semaphores, …
… conditional critical regions, monitors, protected objects.

• Guard evaluation times, nested monitor calls, deadlocks, …
… simultaneous reading, queue management.

• Synchronization and object orientation, blocking operations and re-queuing.

• Message based synchronization

• Synchronization models
• Addressing modes
• Message structures
• Examples

© 2006 Uwe R. Zimmer, The Australian National University Page 511 of 516 (Chapter 10: to 516)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Summary

Non-Determinism

• Selective synchronization

• Selective accepts
• Selective calls
• Indeterminism in message based synchronization

• General Non-Determinism in Concurrent Systems

© 2006 Uwe R. Zimmer, The Australian National University Page 512 of 516 (Chapter 10: to 516)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Summary

Scheduling

• Basic performance based scheduling

• is not known: first-come-first-served (FCFS), round robin (RR),
and feedback-scheduling

• is known: shortest job first (SJF), highest response ration first (HRRF),
shortest remaining time first (SRTF)-scheduling

• Basic predictable scheduling

• Fixed Priority Scheduling (FPS) with Rate Monotonic (RMPO)
• Earliest Deadline First (EDF)

Ci

Ci

© 2006 Uwe R. Zimmer, The Australian National University Page 513 of 516 (Chapter 10: to 516)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Summary

Safety & Liveness
• Liveness

• Fairness

• Safety

• Deadlock detection
• Deadlock avoidance
• Deadlock prevention

• Failure modes

• Definitions, fault sources and basic fault tolerance

• Atomic & Idempotent operations

• Definitions & implications

© 2006 Uwe R. Zimmer, The Australian National University Page 514 of 516 (Chapter 10: to 516)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Summary

Architectures

• Academic

• occam 2.1, CSP, …

• Workfloor

• Ada95, Java, …

• Environments / Operating Systems

• Operating systems architectures
• UNIX as a concept and basic UNIX features
• POSIX

© 2006 Uwe R. Zimmer, The Australian National University Page 515 of 516 (Chapter 10: to 516)

Real-Time & Embedded SystemsConcurrent & Distributed Systems

Summary

Distributes Systems
• Networks

• OSI, topologies, standards

• Time

• Synchronized clocks, virtual (logical) times
• Distributed critical regions (synchronized, logical, token ring)

• Distributed systems

• Elections
• Distributed states, consistent snapshots
• Distributed servers (replicates, distributed processing, distributed commits)
• Transactions (ACID properties, serializable interleavings, transaction schedulers)

